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T
he conception and development of
nanoplasmonic metamaterials has
opened the door to the control of

light fields on the nanoscale, a scale that is
significantly smaller than the wavelength of
visible light. Endowed with the possibility of
such extreme control, metamaterials have
been shown to enable the realization of
materials with a vanishing or negative re-
fractive index, inspiring applications in ima-
ging (the “perfect lens”),1,2 negative-index-
based “invisibility” cloaking,3 and even the
stopping of light.4,5 Unfortunately, in the
optical regime, the absorption coefficients
of passive negative-index metamaterials
may be significant due to their nanoplasmo-
nic constituents. Not surprisingly, intense ef-
forts to conceive concepts that compensate
the losses by enhancing metamaterials with
gain media have recently been made.6�15

Most prominently, it has been shown experi-
mentally for the example of a double-fishnet
metamaterial with incorporated laser dye11

that the effective gain enhancement due to
the nanoplasmonic environment enables the
compensationof its internal dissipative losses.
At the same time, it has become evident that
engineering the emission properties of gain-
enhanced plasmonic nanostructures andme-
tamaterials in the loss-compensation regime
and beyond (amplification, coherent emis-
sion, lasing, etc.) requires fundamental insight
into the physical mechanisms underlying the
nonlinear dynamical gain�plasmon interac-
tion on the nanoscale. However, the concep-
tion of a comprehensive model encompass-
ing all essential aspects of the physics of
gain-enhanced nanoplasmonics and meta-
materials has continued to present a substan-
tial challenge. Indeed, such a description has
to consider anumberof physical andpractical
aspects, the integration of which into a single

model is particularly demanding: First, non-
linearities, such as gain saturation, gain de-
pletion, and spatial hole burning, may
dominate the dynamics and thus the overall
performance. Second, a plasmonic nano-
structure/metamaterial is inherently struc-
tured on the nanometer scale, requiring a
deep subwavelength spatial resolution and
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ABSTRACT

Nanoplasmonic metamaterials are an exciting new class of engineered media that promise a

range of important applications, such as subwavelength focusing, cloaking, and slowing/

stopping of light. At optical frequencies, using gain to overcome potentially not insignificant

losses has recently emerged as a viable solution to ultra-low-loss operation that may lead to

next-generation active metamaterials. Maxwell-Bloch models for active nanoplasmonic

metamaterials are able to describe the coherent spatiotemporal and nonlinear gain�plasmon

dynamics. Here, we extend the Maxwell-Bloch theory to a Maxwell-Bloch Langevin

approach;a spatially resolved model that describes the light field and noise dynamics in

gain-enhanced nanoplasmonic structures. Using the example of an optically pumped

nanofishnet metamaterial with an embedded laser dye (four-level) medium exhibiting a

negative refractive index, we demonstrate the transition from loss-compensation to

amplification and to nanolasing. We observe ultrafast relaxation oscillations of the bright

negative-index mode with frequencies just below the THz regime. The influence of noise on

mode competition and the onset and magnitude of the relaxation oscillations is elucidated,

and the dynamics and spectra of the emitted light indicate that coherent amplification and

lasing are maintained even in the presence of noise and amplified spontaneous emission.

KEYWORDS: plasmonics . metamaterials . loss-compensation . amplification .
nanolasing . Maxwell-Bloch theory . quantum noise
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a full three-dimensional description to account for the
relevant microscopic processes that affect the gain
distribution, such as gain saturation and spatial inho-
mogeneities due to high field enhancements close
to the metal. Third, quantum noise that leads to
(amplified) spontaneous emission couples not only to
the resonances of themeta-atoms but also tomodes of
the whole, often periodic, structure. In the light of
recent advancements in quantum plasmonics16,17 and
with a view toward harnessing coherent amplification
in nanoplasmonic metamaterials, an understanding of
quantum noise in the coupling between plasmons and
excitations is of fundamental importance. Finally, the
modes of gain-enhanced nanoplasmonic metamater-
ials are quasi-modes that couple to the radiative con-
tinuum (photonic decay) and to electronic excitations in
the metal (plasmonic decay). While approaches bor-
rowed from quantum laser theory that build on dis-
crete modes can make predictions about properties of
conventional lasers, they are generally unable to deal
with the quasi-modes in gain-enhanced nanoplasmonic
metamaterials where there is spatiotemporal coherence
in the gainmaterial and spatiotemporal coherence in the
plasmons that may in turn provide coherent feedback.
Here, we establish a Maxwell-Bloch Langevin ap-

proach linking stochastic four-level Langevin equations
that grasp the quantum noise properties18 of the gain
medium and incorporate these into a previously devel-
oped semiclassical Maxwell-Bloch theory for gain-
enhanced nanoplasmonic metamaterials.12,19,20 This
approach follows the spirit of time-domain models of
noise as presented for a two-level gain medium21 and
successfully employed to describe properties of ran-
dom lasers.22 In our case of a gain-enhanced nanoplas-
monic metamaterial, a unit cell of which is highlighted
in Figure 1, optical pumping gives rise to a highly in-
homogeneous inversion that dynamically affects the
supported modes and their competition on the nano-
scale. Therefore, a four-levelmodel for the gainmaterial
is required. Note that, in the transmission/reflection
direction, the system is, as expected from a system that
is not opaque, modeled as an open system. Using the
afore-described approach, we investigate the impact of
(quantum) noise on the amplification process as evi-
denced in the relaxation oscillations in an optically
pumped nanoplasmonic double-fishnet metamaterial.
Owing to an inherently multimode nature and strong
spatial hole burning effects, this gain-enhanced nano-
plasmonic metamaterial brings together a rich variety of
nonlinear phenomena, such as mode competition, ultra-
fast relaxation oscillation dynamics, and self-pulsations,
the latter twowith frequencies just below theTHz regime.

The Maxwell-Bloch Langevin Approach. The Maxwell-
Bloch Langevin (MBL) approach described heremodels
the spatiotemporal interplay of coherent amplification
and noise in gain-enhanced plasmonic nanostructures
and metamaterials. Let us start by reminding us of the

essentials of the modeling of metals in nanoplasmonic
materials. The spatiotemporal interaction of electro-
magnetic fieldswith the free electronplasmaof ametal is
the fundamental mechanism for the excitation and
propagation of surface plasmons (SPs) on metal�dielec-
tric interfaces. The Drude model is a simple but remark-
ably good response model that, when coupled to
Maxwell's equations, accurately reproduces many fea-
tures characteristic to these excitations. Here we are
interested in the realistic modeling of SPs excited and
localized on the thin nanostructured silver films em-
bedded within the nanoplasmonic metamaterial struc-
ture. The model we adopt overlays a Drude response (D)
with two Lorentzian resonances (L1,L2) to locally (at each
point) create a response, which approximates experi-
mentally measured thin-film data within a wave-
length range λ = 300�800 nm. In this approach, the
electric field E(x,t) dynamically drives three polarizations
Pi(x,t), leading to

D2PD

Dt2
þ γD

DPD

Dt
¼ ε0ω

2
DE

D2PL1

Dt2
þ 2γL1

DPL1

Dt
þω2

L1PL1 ¼ ε0ΔεL1ω
2
L1E

D2PL2

Dt2
þ 2γL2

DPL2

Dt
þω2

L2PL2 ¼ ε0ΔεL2ω
2
L2E

(1)

with parameters taken from McMahon et al.23 We note
that, in metamaterials, SP modes are excited when the
propagating electromagnetic wave dynamically inter-
acts with free electrons of the metallic nanostructure.
Nonpropagating (localized) SP resonances, which canbe
excited inside a plasmonic resonator, are inherently lossy
(ohmic losses) and couple to free-space photonicmodes
with a characteristic radiation damping rate. We empha-
size that the resonant excitation, evolution, and tem-
poral decay of both propagating and nonpropagating

Figure 1. Gain-enhanced nanoplasmonic double-fishnet
metamaterial. The gain material is embedded in the di-
electric (turquoise) filling the space between the two perfo-
rated silver films (light gray) with parameters: period
280 nm, spacer height 70 nm, hole size 100 � 100 nm,
metal thickness 40 nm, and refractive index of dielectricnh =
1.62. The false color inset shows the plasmonic field en-
hancement at the pump wavelength in two planes with-
in the unit cell. Brighter colors represent higher field en-
hancements.
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(localized) SP modes emerge naturally from the pre-
sented model, and fundamental plasmonic spatiotem-
poral coherence is fully included.

Our approach combines the Drude-Lorentz materi-
al model for the metal with the Bloch equations for
a four-level gain system as used for active nano-
plasmonic metamaterials.12,19,20 It enables us not only
to describe on the nanoscale the spatiotemporal evo-
lution of electromagnetic fields in arbitrary dielectric
and nanoplasmonic geometries but also to include the
spatiotemporal electronic responses of linear and
nonlinear gain media. Here, we extend the model
with Langevin terms to capture the noise induced by
system�bath interactions in the gain medium. To
allow for optical excitation, we model the optically
pumped gain material as a four-level system with an
optical transition for the absorption (0T 3) and for the
emission (1 T 2) as shown in Figure 2.

The two dipole transitions are phenomenologically
coupled to form a four-level system by adding non-
radiative carrier relaxation processes 3f 2 and 1f 0.
Optical transitions between the subsystems (0,3) and
(1,2) are considered to be dipole forbidden. We chose
the parameters of the model to represent experimen-
tallymeasured characteristics of Rhodamine 800.24 The
Lorentzian line shapes of the model provide an ap-
proximation to the actual line shapes as the measured
line shapes of the absorption and emission lines arise
from a combination of homogeneous broadening due
to decoherence and inhomogeneous broadening due
to a multitude of vibrational states. The polarization
densities Pa = Pa(x,t) of the transition 0 T 3 and Pe =
Pe(x,t) of the transition 1 T 2 are driven by the local
electric field E(x,t) according to

D2Pi

Dt2
þ 2Γi

DPi

Dt
þω2

0, iPi ¼�σiΔNiE, i ¼ a, e (2)

Here, ΔNa(x,t) = N3(x,t) � N0(x,t) is the inversion of the
absorption transition and ΔNe(x,t) = N2(x,t) � N1(x,t)
the inversion of the emission transition. We also intro-
duce the resonance frequenciesω0,i = (ωr,i

2 þ Γi
2)1/2 and

a phenomenological isotropic coupling constant σi.
When the dye is optically pumped on the transition
(0 T 3), the four-level model will provide gain at the
signal frequency via stimulated emission of the transi-
tion (1 T 2). The inversion can then be harnessed as
gain that is locally coupled into the electromagnetic
fields with the local magnitude of the gain depending
on the spatial distribution of the electric field and the
inversion. Inherently included in themodel are also the
effects of gain saturation and depletion of the transi-
tions which allows for the observation of nonlinearities
such as pump saturation and gain depletion, mani-
festing themselves most strongly in pump/probe
experiments.

The Maxwell-Bloch theory can be further extended
to incorporate noise by adding stochastic Langevin

terms. In the Methods section, we derive a second-order
differential equation formalism;analogous to an existing
Langevin approach for FDTD calculations of active two-level
systems21;inwhicheq12, eq15,eq17, andeq18combine
to give the full set of equations for the four-level system

D2Pe

Dt2
¼ �2Γe

DPe

Dt
�ω2

0, ePe � σe(N2 � N1)E

� Ke ω0,eIm(F12)þ DRe(F12)
Dt

� �

D2Pa

Dt2
¼ �2Γa

DPa

Dt
�ω2

0, aPa � σa(N3 � N0)E

� Ka ω0,aIm(F03)þ DRe(F03)
Dt

� �
(3)
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Here, κe,a are the proportionality factors to transform
Re(F12) to the polarizations Pe,a and Ni = FiiNcell the
number of four-level systems in state i per unit volume
(cell). The noise terms Fi,i, i = 0...3 for the occupation
densities and F12 and F03 for the polarization terms are
given in eq 17 and eq 18, respectively. Equations 3 and
4 together with eq 1, self-consistently coupled to the
full time-domain 3D Maxwell equations, represent the
basis of the Maxwell-Bloch Langevin approach to
coherent amplification and noise in gain-enhanced
plasmonic nanostructures and metamaterials.

RESULTS AND DISCUSSION

From Loss-Compensation to Coherent Amplification.
Recently, it has been shown that dissipative (Ohmic)
losses in negative-index metamaterials can be compen-
sated in an ultrafast pump�probe setup where both the
pump and the probe pulse were chosen to be shorter
than the time scales onwhich typical fluctuationsbecome
relevant12,19 and, crucially, where the gain provided was

Figure 2. Sketch of the four-level system and its
parameters.
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below the lasing threshold of the system. To directly
link upwith these studies, wewill here initially suppress
noise and explore the transition from ultrashort pulse
to quasi-continuous wave (cw) optical pumping, and
with increasing pump duration, we cross the lasing
threshold of the bright negative-indexmode. As a char-
acteristic example of a gain-enhanced nanoplasmonic
metamaterial, we will consider the symmetric nanoplas-
monic double-fishnet structure, as depicted in Figure 1.
We simulate the silver films (period 280 nm, spacer
height 70 nm, hole size 100 � 100 nm, metal thickness
40 nm) on the basis of eq 1, and for the laser dye gain
medium, modeled according to eq 3 and eq 4, we
assume the following parameters: a density of N =
2 � 1019 cm�3, emission and absorption wavelengths
λe = 2πc/ω0,e = 715 nm and λa = 690 nm, coupl-
ing strengths σe = 0.82 � 10�8 C2 kg�1, σa = 1.08 �
10�8 C2 kg�1, dephasing rates Γe = Γa = 40 ps�1, and
relaxation rates τ30 = 0, τ32 = τ10= 1/γ10

r = 100 fs and τ21 =
1/γ21

r = 500 ps.
In a sequence of numerical pump�probe experi-

ments with a broad-band probe pulse, gradually in-
creasing the duration of the optical pump, we progres-
sively invertmore andmoreof the laser dyegainmedium
inside the double-fishnet structure, reaching loss-
compensation at the point when dissipative losses are
overcome. Further increasing the pump duration (and
thus the gain), we subsequently enter a regime of
coherent amplification before radiative losses are over-
come and lasing starts. Figure 3 shows the dynamic
evolution of the transmitted field intensitywith Ex-polarized
pump pulses of increasing duration (from 1.5 ps to about
30 ps) and, for the case of the longest pulse with
approximately 30 ps (light blue), the dynamics of the
average inversion (black line) in the laser dye gain
medium embedded within the double-fishnet structure.
We can see that, as long as the system is pumped, the
average inversion in the systemgradually rises, providing
more and more gain to probe light entering the system.

To extract effective electromagnetic parameters
from the transmission, reflection, and absorption

spectra, we adopt the methodology of Smith et al.25

(see the Methods section for details), and on its basis,
we calculate the corresponding complex refractive in-
dex. Figure 4a shows the extracted dispersion of the real
(dashed lines) and imaginary parts (solid lines) of the
effective refractive indices for the structurewhenprobed
with Ex-polarized light; 2b portraits the corresponding
case with Ey-polarized probe light. Increasing the pump
duration before the probe pulse is launched leads, first,
to a decrease in the absorption (characterized by Im(n))
and eventually to a negative Im(n), indicating that the
structure has become amplifying instead of absorbing
(red line in Figure 4a). A further increase in the pump
duration results in the deposition of even more gain in
the active nanostructure. In that regime, we find that the

Figure 3. Transition from loss-compensation to coherent amplification to the onset of lasing. Far-field transmission of the
optically pumped gain-enhanced double-fishnetmetamaterial for varying duration τp of the optical pump intensity I (brown,
1.5 ps; yellow, 2.9 ps; red, 4.7 ps; blue, 8.5 ps; green, 15.8 ps; light blue, 30.5 ps) and average inversion (N2�N1)/Ncell of the gain
material embedded in the fishnet (black line) for τp = 30.5 ps.

Figure 4. (a) Real (dashed lines) and imaginary parts (solid
lines) of the refractive indices extracted for Ex-polarized
probe light for the unpumped gain-enhanced fishnet me-
tamaterial (black) and increasing pump durations from 1.5
ps up to 4.7 ps for Ex polarization and 8.5 ps for Ey
polarization with color scheme as in Figure 3. (b) Same as
(a) for y-polarized probe light.
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effective parameters, as extracted by the standard re-
trieval method, exhibit discontinuities (data not shown
here) despite the fact that the transmission/reflection/
absorption spectra remain continuous (see also the
Methods section).

An interesting point to note by comparing panels a
and b of Figure 4a,b is that the effective refractive index
of the gain-enhanced double-fishnet structure has
become polarization-dependent despite the fact that
the gain medium is isotropic. How is this possible? It is
the different overlap of the gain inversion engendered
by the Ex pump field with the modes for the two differ-
ent polarizations that enables the Ex-polarizedmode to
exploit more gain than the Ey-polarized mode. Conse-
quently, loss is not compensated in the Ey-polarized
probe case, even for stronger pumping (see longer
pulse duration, blue). This drastically demonstrates the
important role of the spatiotemporal distribution of the
inversion/gain in a gain-enhanced nanoplasmonic
(metamaterial) structure.

This point is also evident when comparing the aver-
age inversion before and after the lasing burst which
develops for a pumping level generated by the pump
pulse with the longest duration (30.5 ps) that we have
chosen in our study. Here, the spatially averaged in-
version in the system has apparently only decreased
marginally. Yet still the mode switches from being
above threshold to below threshold. Indeed, while
the average inversion only shows a surprisingly small
decrease, at the points of high plasmonic field
enhancement, however, the inversion N2 � N1 has
decreased considerably (spatial hole burning), redu-
cing the gain g(x,t) delivered to the mode, given by
the product of the mode's electric field profile and

the inversion

g(x, t) ¼ σE2(x)[N2(x, t) � N1(x, t)]Z
V
u(x)d3x

(5)

Here, u is the energy density of the electromagnetic
field. Figure 5a,b depicts the spatial inversion (top
row) and gain distributions (bottom row) before (t1 =
27.4 ps) and after (t2 = 28.2 ps) the lasing burst,
respectively; the times are indicated in Figure 3.
One can clearly see the inhomogeneity of the gain
and the significant depletion in the regions where the
lasing mode, imprinted in the gain g(x,t), exhibits
high field enhancement. Indeed, the lasingburst burns
a hole into the spatial inversion that strongly reduces
the overall gain available to the mode because the
inversion is reduced most strongly where the electric
field is highest and where most of the gain was
previously provided to the mode.

Figure 3 also shows that even for a shorter pulse
duration (green) a small lasing burst is starting to arise
long after the pump pulse has passed, albeit much less
intense than the lasing burst for the longer pump
duration. This indicates that apparently the gain-
enhanced double-fishnet system has already reached
threshold long before the lasing actually sets in. The
slow onset of lasing can be attributed to the absence of
noise in the numerical simulation. Here, it becomes
most evident that while it is generally advantageous to
include noise (and resulting amplified spontaneous
emission) in a description of gain-enhanced plasmonic
nanostructures/systems or metamaterials, it is im-
perative to do so if the system is coherently pumped
above the lasing threshold. In the next section, we will

Figure 5. Snapshots of the spatial distribution of the inversion (top row) and the gain (bottom row) in the x�y plane centered
between the metal films at times just before and shortly after the lasing burst, as indicated in Figure 3.
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therefore proceed to discuss the consequences of the
inclusion of noise into our model using the Maxwell-
Bloch Langevin approach introduced above.

Ultrafast Relaxation Oscillation Dynamics and Nonlinear
Mode Competition. Having just seen that, for our system,
coherent optical pump pulses shorter than about 10 ps
result in loss-compensation and amplification but
that for τp . 10 ps lasing instabilities set in, we now
specifically investigate the influence of noise on co-
herent amplification, again for our example of a three-
dimensional gain-supplemented nanoplasmonic double-
fishnet metamaterial (see Figure 1). The parameters
used for gain material and Ex-polarized pump are kept,
but now we investigate the regime of cw pump in the
presence of three different noise levels: (1) no noise,
(2) moderate noise, (3) strong noise (see Methods for a
definition of the noise levels).

In order to observe relaxation oscillations;the sig-
nature and fingerprint of coherent amplification and
lasing;both dissipative and radiative losses in the
metamaterial film have to be overcome by the gain
provided through inversion of the gain medium (four-
level system).20 Here we have designed the nanoplas-
monic fishnet metamaterial such that the negative-
index resonanceband is in resonancewith the emission
wavelength of the gainmedium. A good spatial overlap
between inversion and the mode profile of this reso-
nance is achieved by choosing a pump wavelength

between the extraordinary transmission and negative-
index resonances.26 The double-fishnet structure in-
vestigated here is symmetric in the x�y plane so that
the Ex- and Ey-polarized resonances are degenerate. By
coherent optical pumping with an Ex-polarized field,
the symmetry of the system is broken as the inversion
profile created by the pump overlaps more strongly
with the Ex-polarized mode (see Figure 1 for the field
enhancement of the pump). Therefore, it is expect-
ed that relaxation oscillations will first set in for the
Ex-polarized negative-index mode but that the Ey-
polarized mode may still reach threshold. As we will
show below, the coexistence of bothmodes can lead to
nonlinear mode competition.

Figure 6 shows the emission dynamics and emis-
sion spectra of the nanoplasmonic double-fishnet
metamaterial. To demonstrate the influence of noise
of variable magnitude on the THz emission dynamics
and respective spectra, we show the case without
noise (1) in comparison with moderate noise levels
(2) and high levels of noise (3). In the absence of noise,
the ultrafast relaxation oscillations in the Ex-polarized
emission begin only after the build up of excess inver-
sion above the steady-state value. The relaxation oscilla-
tions start with a high peak, are smooth, strongly damp-
ed, andhave a frequency of approximately 250GHz. The
introduction of moderate noise shifts the onset of
the relaxation oscillations to an earlier time, thereby

Figure 6. Ultrafast optical relaxation oscillations and nonlinearmode competition in a gain-enhanced nanoplasmonic fishnet
metamaterial. (a) Dynamics of the inversion at a point of high field enhancement of the Ex-polarized mode (blue line), the
average inversion across the unit cell (green line), and the intensity of Ex- (black line) and Ey-polarized emission (red line) for
different noise levels. The intensity of Ey-polarized emission is scaled up by a factor of 20. (1) No noise, (2) moderate noise
levels, and (3) strong noise. Thewhite dashed line gives the approximate level of the pump intensity transmitted through the
double-fishnet in steady state. (b) Intensity spectra taken from50 ps onward for Ex- (black line) and Ey-polarized emission (red
line). A, B, and C in b.2 indicate the wavelengths of the mode profiles shown in Figure 7.
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reducing their amplitude while the smoothness of the
curves is still retained to a good degree.

From Figure 6, we observe in both the field and
inversion dynamics that the magnitude of the relaxa-
tion oscillation peaks is reduced when noise is present.
In the strong noise case, relaxation oscillations are
barely discernible but the system still lases, as can be
seen from the spectrum in Figure 6b.3. The inclusion of
noise impacts even more strongly on the Ey-polarized
emission (red lines in Figure 6). By pumping the
nanoplasmonic structure with Ex-polarized light, we
have broken its inherent structural symmetry in the
x�y plane, and consequently, emission into the Ex-
polarized mode is then favored. Nonetheless, even in
the absence of noise, the Ey-polarized resonance even-
tually reaches threshold for coherent amplification in
spite of lasing on the Ex-polarized mode. We note
that the onset of the relaxation oscillation in the Ey-
polarized mode can be seen as a small dip in the Ex-
polarized emission. Contrary to the Ex-polarized mode,
steady-state emission is not reached for the Ey-polarized
mode; instead, self-pulsation is observed at a fre-
quency of around 100 GHz. We attribute this self-
pulsation to nonlinear mode competition between
the Ex- and Ey-polarized modes through spatial hole
burning.27 The introduction of noise does not imme-
diately lead to qualitative changes in the Ey-polarized
emission. However, for strong noise, the Ey-polarized
mode is characterized by a broader emission spectrum
and never enters into a coherently emitting state, and
internally, only amplified spontaneous emission is ob-
served. Still the intensity spectra in Figure 6b.3 reveal
that the emitted Ex-polarized field largely retains its
frequency purity as is evident from the narrow line
width of the emitted intensity.

At a position of high field enhancement of the Ex-
polarized mode (chosen for the blue line in Figure 6),
we observe a strong, phase-shifted imprint of the re-
laxation oscillations on the local inversion. In the ab-
sence of noise, the local inversion rises to a value of
above0.85and thepumping saturatesbefore lasing sets
in with strong relaxation oscillations that deplete the
gain. After rapidly damped oscillations, a steady-state

local inversion is reached. For strong noise, however,
the inversion jitters around the steady-state value even
for late times. The jitter induced by noise is greatly
reduced in magnitude when looking at the average
inversion (green line). This indicates that the noise on
the inversion is, to a largedegree, independent across the
unit cell. Interestingly, the average inversion continues to
rise with the onset of lasing and reaches a steady-state
value at a much later time. However, once relaxation
oscillations set in, the average inversion is only reduced
intermittently. The stark difference between the dy-
namics of the local inversion and the average inversion
illustrates the importance of an approach with spatio-
temporal resolution. Indeed, important parameters, such
as lasing thresholds of modes, are determined by the
intensity-weighted average over the inversion, which can
be very different from the average inversion, in particular,
due to the presence of (nonlinear) gain.

We noted above that the Ey-polarized mode can
reach threshold long after lasing in the Ex-polarized
mode has set in. This is because the inversion is still
rising at points where the field enhancement of the
Ex-polarized mode is low, reflected in the rise of the
average inversion after the initial relaxation oscillations.
Since the overlap between the two modes is not very
strong (see Figure 7), regions of low field enhancement
of the Ex-polarized mode can have a high field en-
hancement of the Ey-polarized mode. The inversion in
regions where field enhancement is simultaneously
low for the Ex-polarized mode and high for the Ey-
polarized mode allows this spatially discriminated
mode to come above threshold. When the Ey-polarized
emission sets in, the inversion at the position of high
field enhancement of the Ex resonance increases
whereas the average inversion decreases. The first
can be understood by observing that the Ex-polarized
emission has, due to nonlinearmode competition, a dip
at the onset of lasing into the second resonance thus
for a short time allowing the inversion to rise at posi-
tions where the Ey-polarized resonance only has a
weak electric field. This rise in inversion subsequently
enhances the emission into the Ex-polarized reso-
nance suppressing again the Ey-polarized resonance.

Figure 7. Mode profiles of the electric field Ez in the x�y plane centered between the metal films of the double-fishnet at the
wavelengths corresponding to the peaks in the intensity spectra of Figure 6b.2: A = 716.43 nm, B = 716.61 nm, and C =
717.79 nm. The field strengths are normalized to the maximum field amplitude at each wavelength.
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Self-pulsations, clearly seen in the much weaker Ey-
polarized emission, are the consequence of this mode
competition for the gain.

The intensity spectra presented in Figure 6b show
that the emission is significantly shifted from the gain
resonance at 715 to 716.61 nm. Considering that the
“cold-cavity” resonance is also around 715 nm, this
wavelength shift clearly indicates that the “nanoplasmo-
nic hot-cavity” resonance is shifted from the cold-cavity
resonance. The (later-time) far-field emission spectra
show a narrow lasing peak in the Ex-polarized emission
(black lines). Distinct side peaks withΔω≈ 100 GHz (the
self-pulsation frequency) are apparent in the coherent
spectrum and disappear when noise is introduced.
Instead, noise significantly raises the background and
leads to irregular peaks around the main emission. The
differences between the spectra are more accentuated
in the spatially discriminated Ey-polarized mode (red
lines). In the strong noise case, the spectrum changes
from a lasing spectrum to a broad amplified sponta-
neous emission spectrum. Amplified spontaneous emis-
sion can thus shift the lasing threshold sufficiently to
suppress lasing into the Ey-polarized mode.

Figure 7 shows the mode distributions for the case
of moderate noise at three different wavelengths
(indicated in Figure 6b.2 by A, B, and C), corresponding
to the central lasing peak and the first side-peaks in the
spectrum. These results confirm that the central lasing
peak of the Ex-polarized resonance dominates the
electric field distribution showing a nodal line at
x = 0. The field profiles of the side peaks display a
nodal line at y = 0, indicating the predominance
of Ey-polarized emission at these wavelengths. This

observation agrees well with the spectrum for mod-
erate noise in Figure 6b.2, where the side peaks of the
Ey-polarized emission are substantially higher than
the Ex-polarized emission at the same wavelength.

CONCLUSION

We have presented a spatiotemporal Maxwell-Bloch
Langevin approach describing the interplay of coher-
ent and incoherent light field and noise dynamics in
gain-enhanced nanoplasmonics and metamaterials.
With the example of a symmetric, optically pumped
nanoplasmonic double-fishnet metamaterial with an
embedded laser dye (four-level) medium exhibiting a
negative refractive index, we have demonstrated the
possibility of compensating characteristic Ohmic
losses by gain. In spite of the inherent structural sym-
metry, a polarized pump field can induce a gain-related
polarization anisotropy due to the distribution of the
inversion. Following loss-compensation, it was shown
that with increased pumping there first is a broad
window of amplification before a lasing instability
triggers coherent ultrafast relaxation oscillations of
the bright negative-index mode with frequencies just
below the THz regime. Under strong continuous
pumping, the degenerate Ex- and Ey-polarized modes
compete for gain and enter into a self-pulsating state.
Studying the effect of noise strength on the spatio-
temporal external and internal field dynamics, we
have demonstrated that, although the details of the
dynamics and spectral response depend on the noise
magnitude, the emitted optical field can exhibit co-
herent amplification and lasing in the presence of
strong noise.

METHODS

Noise in Two-Level Equations with Real-Valued Polarization. The
Maxwell-Bloch equations for a two-level system under optical
excitation may be considered as the minimal model for a dipolar
optical transition in adiscrete electronic system.An interactionwith
reservoirs is included via phenomenological dissipation terms,
namely, the relaxation and dephasing rates. Because the dynamics
of the reservoirs (baths) themselves are external to the core system
describing the level dynamics, the damping of the system is
accompanied by stochastic forces acting back onto the system.

Assuming Markovian noise correlations, the dynamics of an
operator Â that describes an observable of the reduced system
can be approximated as28

DÂ(t)
Dt

¼ 1
ip

[Â(t), Ĥs(t)]þ D̂(t)þ F̂(t) (6)

where Ĥs represents the projection of the total Hamiltonian onto
the reduced systemand D̂ and F̂ are the effective dissipation and
noise operators, respectively, arising from the interaction with
the reservoir. The two-time correlation of the stochastic term F̂ is
determined by the fluctuation�dissipation theorem:

ÆF̂(t)F̂(t0)æ ¼ 2ÆD̂(t)æδ(t � t0) (7)

The Markovian Langevin equations for the expectation
values of the density matrix elements of a two-level system
under optical excitation can then be formulated as21,28,29

DF12
Dt

¼ i(F12ωr þΩ12(F11 � F22)) � γlF12 þΓ12

D(F22 � F11)
Dt

¼ 4Im(Ω12F12) � γr(F22 � F11 þ 1)þΓinv

(8)

with

Γ12 ¼ (ξ1 þ iξ2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(γl � γr=2)(1þ F22 � F11)

2N

r

Γinv ¼ ξinv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γr(1þ F22 � F11)

N

r (9)

and Ω12 = |μ12 3 E|/p is a classical, coherent electric field driving
the atomic two-level system via its dipole moment μ12. We
ignore thermal fluctuations which are negligibly small at optical
frequencies. The ξi are real, Gaussian, random variables fulfilling
the two-time correlation

Æξi(t)ξi0 (t0)æ ¼ δii0δ(t � t0) (10)

N is the number of atoms in the volume represented by the grid
cell. For a 3D simulation of a complete system, this is simply the
number of atoms per dx3. In 1D or 2D simulations, the grid cell
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can represent a much larger volume; in the 1D case, it is Adx,
where A is the cross-sectional area of the neglected dimensions;
in the 2D case, it is Ldx2, where L is the extension of the system in
the third dimension. We express this ratio between the number of
atoms in agrid cell and thenumber of atoms in thephysical volume
represented by the grid cell by a factor ζ, so that N = Ncellζ.

In the second-order in time real polarization approach taken
for the four-level system, the polarization P is proportional to
the real part of the expectation value of the density matrix
element ÆF̂12æ = F12, whereas the imaginary part of the expecta-
tion value is given by19

Im(F12) ¼
1
ωr

DRe(F12)
Dt

þ γlRe(F12)
� �

(11)

Although the polarization is now reduced to a single real number,
the noise associated with it is still expressed by two independent
random numbers. The second-order in time equation containing
Langevin terms for the real part of F12 can then be expressed as

D2Re(F12)
Dt2

¼ �2γl
DRe(F12)

Dt
� (ω2 þγ2l )Re(F12)

�ωr
μ 3 E
p

(F22 � F11) �ωrIm(Γ12)þ DRe(Γ12)
Dt

ð12Þ

and the equation for the occupation density is given by

DF22
Dt

¼ 2
μ 3 E
pωr

DRe(F12)
Dt

þ γlRe(F12)
� �

� γrF22 þ
Γinv

2
(13)

Four-Level Langevin Equations. The four-level system consists of
two individual two-level systems (3 T 0 and 2 T 1) which are
connected via nonradiative recombination from levels 3 to 2 (γ32

r )
and 1 to 0 (γ10

r ). These two additional nonradiative, dissipative
processes require additional Langevin noise terms. Furthermore,
the noise terms of the previously discussed case of a two-level
system have been derived under the assumption of F22þ F11 = 1,
whereas now F33þ F22þ F11þ F00 = 1.We also note that now the
additional decay channels modify the noise on the polarization
and occupation densities. It is therefore necessary to rederive the
noise terms starting from the fluctuation�dissipation theorem18

ÆF̂l(t)F̂m(t)æ ¼ 2ÆD̂lm(t)æ

2ÆD̂lmæ ¼ d

dt
ÆÂlÂmæ

� �
NH

� ÆD̂lÂmæ � ÆÂlD̂mæ (14)

where the time derivative includes only the non-Hamiltonian
(dissipative) terms, D̂l are the dissipation terms associated with
the operators Â, and themean values correspond to entries of the
density matrix.

The equations for the densitymatrix of the four-level systemare

DF̂12
Dt

¼ i( F̂12ωþΩ12( F̂11 � F̂22)) � Γe F̂12 þ F̂12

DF̂03
Dt

¼ i( F̂03ωþΩ03( F̂00 � F̂33)) � Γa F̂03 þ F̂03

DF̂00
Dt

¼ �2Im(Ω03 F̂03)þ γr10 F̂11 þγr30 F̂33 þ F̂00

DF̂11
Dt

¼ �2Im(Ω12 F̂12)þ γr21 F̂22 � γr10 F̂11 þ F̂11

DF̂22
Dt

¼ 2Im(Ω12 F̂12) � γr21 F̂22 þ γr32 F̂33 þ F̂22

DF̂33
Dt

¼ 2Im(Ω03 F̂03) � γr30 F̂33 � γr32 F̂33 þ F̂33 (15)

The correlations ÆF̂lF̂mæ of the stochastic forces are calculated
from eq 14:

ÆF̂12 F̂
†
12æ ¼ d

dt
Æ F̂12 F̂

†
12æ

� �
NH
� Æ �Γe F̂12 F̂

†
12æ � Æ F̂12( �Γe F̂†12)æ

¼ d

dt
F11

� �
NH

þ 2ΓeF11 ¼ γr21F22 � γr10F11 þ 2ΓeF11

ÆF̂†12F̂12æ ¼ γr32F33 � γr21F22 þ 2ΓeF22
ÆF̂03 F̂†03æ ¼ γr30F33 þ γr10F11 þ 2ΓaF00
ÆF̂†03F̂03æ ¼ �γr30F33 � γr32F33 þ 2ΓaF33

ÆF̂00F̂00æ ¼ d

dt
F̂00

� �
NH

� 2Æ(γr30 F̂33 þγr10 F̂11) F̂00æ

¼ γr30F33 þ γr10F11
ÆF̂11F̂11æ ¼ γr21F22 þ γr10F11
ÆF̂22F̂22æ ¼ γr32F33 þ γr21F22
ÆF̂33F̂33æ ¼ γr32F33 þ γr30F33 (16)

In a typical four-level system γ21
r ≈ γ30

r , γ32
r ≈ γ10

r , and two of
the relaxation noise terms can be neglected. Note, however,
that for the validation performed below, the relaxation rates
between the subsystems γ10

r and γ32
r are set to zero so that the

terms proportional to γ21
r and γ30

r must be retained. Also,
considering that in the nanoplasmonic metamaterial consid-
ered here there are a large numbers of photons and dipoles in
the active medium that collectively participate in the coherent
and fluctuation dynamics, we may apply the quantum-classical
correspondence principle. In this spirit, the resulting semiclas-
sical approach translates operator equations into c-number
equations for a Hermitian density matrix. Therefore, we arrive
at the following real-valued noise terms for the occupation
densities that constitute the real-valued diagonal elements of
the density matrix

F00 ¼ ξ10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆF̂00F̂00æ=N

q
¼ ξ10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γr10F11=N

p

F11 ¼ �ξ10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γr10F11=N

q

F22 ¼ ξ32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γr32F33=N

q

F33 ¼ �ξ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γr32F33=N

q
(17)

This formulation ensures that the trace of the density matrix F̂ is
conserved. For the polarization terms, we choose the normally
ordered operator condition18,30 to reduce the operator equa-
tions to c-number equations

F12 ¼ (Re(ξ12)þ iIm(ξ12))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆF̂†12F̂12æ=N

q

¼ (Re(ξ12)þ iIm(ξ12))

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γr32F33 þ (2Γe � γr21)F22

2N

r

F03 ¼ (Re(ξ03)þ iIm(ξ03))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆF̂†03F̂03æ=N

q

¼ (Re(ξ03)þ iIm(ξ03))

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( �γr32 þ 2Γa � γr30)F33

2N

r
(18)

Note that the noise terms for the density matrix elements scale
inversely with the square root of the number of particles in the
physical volume represented by the grid cell N = ζNcell. This is
due to the scaling properties of the standard deviation of a
Gaussian distribution of independent random numbers. The
noise levels used in the article are given by ζ = 10 000 for
moderate noise (case 2) and ζ=100 for strong noise (case 3) and
indicate the number of unit cells over which the noise is
assumed to be coupled. For the mesoscopic system inside a
grid cell, we assume isotropic coupling by introducing a polar-
ization vector Pe,a driven by the electric field vector E and a
scalar dipole strength for the emission e (2T 1) and absorption
lines a (3 T 0), resulting in independent Langevin noise terms
for all three polarization directions.

Numerical Implementation. The numerical implementation of
the four-level Maxwell-Bloch theory for amplification in active
nanoplasmonic metamaterials20 is described in detail by
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Wuestner et al.19 As we are here extending the approach by
taking on board the interplay of noise with coherent amplifica-
tion, a few comments are in place. To efficiently generate
Gaussian random numbers with unit standard deviation, we use
the Fortran implementationof the ziggurat algorithm31 taken from
http://www.netlib.org/random/ziggurat.f90. Also, it needs to be
noted that, in the c-number approach, occupation densities may
momentarily assume negative values. This does not constitute a
problem as long as longer time averages stay within the range of
physical values. Note, however, that in this case a practical
computational issue may occur in the calculation of the noise
terms because of the square root dependence, which we solve by
using the absolute values. Moreover, as a consequence of the real-
valued Maxwell-Bloch differential equations for the polarization
being second-order in time, the polarization noise terms contain a
time derivative. We calculate this time derivative by Euler forward
integration

D(ξ1
ffiffiffi
A

p
)

Dt

�����
nþ1

¼ (ξnþ 1
1

ffiffiffiffiffiffiffiffiffiffi
Anþ1

p
� ξn1

ffiffiffiffiffi
An

p
)=Δt (19)

where A denotes the term under the square root from eq 18. No
systematic error accumulates, and no instabilities are expected
using Euler forward integration for this time derivative since the
individual terms are random. Finally, it should to be noted that in
most cases the four-level model is used to approximate a molec-
ular system with a multitude of individual energy levels being
effectively combined into four levels by expressing the actual line
width consisting of inhomogeneous and homogeneous
broadening in terms of an effective homogeneous broad-
ening process. However, only the broadening induced by
dephasing contributes to the noise in the real molecular
system. This is accounted for by replacing Γe,a in eq 18 with
the dephasing rate γd.

Transition from Superfluorescence to Amplified Spontaneous Emission.
How can we test that amplification in our nanoplasmonic meta-
material is coherent and that the influence of noise is correctly
grasped? Superfluorescence (SF) is a phenomenon of collective
radiation from an ensemble of inverted atoms which is critically
dependent on noise. Thereby the amplitude of the emission
depends quadratically on the number of atoms, whereas the
width of the peak depends inversely on the number of atoms. The
pulse-width of the SF peak τr for a one-dimensional (1D) wire/
pencil-shaped system (Fresnel number F = A/λL≈ 1) is given by32

τr ¼ 8πAT1
3λ2Nex

(20)

with the relaxation time of the upper state population T1, the area
of the cylinder A, and the total number of inverted atomsNex. The
time delay of the SF peak τd can be calculated as32

τd ¼ τr
4
(ln(

ffiffiffiffiffiffiffiffiffiffiffiffi
2πNex

p
))2 (21)

Generally, the phenomenon of SF relies on the build up of co-
herence between the atoms in the emitting ensemble. So, if we
observe a SF peak, we can expect coherence. However, small
dephasing times (i.e., fast dephasing rates) may lead to strong
decoherence that can inhibit the build up of coherence. Due to
the presence of amplification, this may lead, in turn, to amplified
spontaneous emission (ASE), where it has been shown that the
minimum dephasing time T2 that determines the transition from
SF to ASE is given by32

T2 ¼ ffiffiffiffiffiffiffiffi
τrτd

p
(22)

The build up of coherence is also inhibited if the number of atoms
in the ensemble is too large leading to a maximum number Nc of
atoms that will emit cooperatively

Nc ¼ 8πcT1A

3λ2L
(23)

with L being the length of the wire-shaped system. If the number
of atoms present is larger than Nc, SF still occurs but not all of the
atoms will participate.

To simulate SF,21,33 one needs an ensemble of initially
inverted two-level systems that are evenly distributed over a
particular volume. For the purpose of this test of the real-valued
polarization approach to the Maxwell-Bloch Langevin equa-
tions, we initially reduce the four-level system to a two-level sys-
tem by setting the relaxation rates γ32

r and γ10
r to 0 and F22 = 1.

The wire-shaped geometry results in an emission predomi-
nantly along the axis of the wire so that a one-dimensional
representation is justified. In finite-difference time-domain
simulation, a deep subwavelength resolution with a grid cell
size that is substantially smaller than the emission wavelength
of the atoms is needed. This grid cell represents the whole area
of the transverse dimension (in our case awire). Therefore, a grid
cell of length dx represents the volume of Adx. This results in the
volume ratio ζ = A/dx2, which has to be accounted for in the
calculation of the noise terms. Furthermore, an initial tipping
angle of the Bloch vector, consistent with the uncertainty
relation, has to be assumed in order to start off SF. The
magnitude of this tipping angle θ is inversely proportional to
the square root of the number of atoms N represented by a grid
cell θ = 2ξ4/

√
N, where ξ4 is a Gaussian random variable with

standard deviation of 1. The angle θ is calculated for each grid
cell individually and an angle φ of the Bloch vector in the x�y

Figure 8. Transition from superfluorescence (SF) to ampli-
fied spontaneous emission (ASE) in a wire-shaped system as
seen in the dynamics of the electromagnetic energy for T2 =
100 ps (left), T2 = 18 ps (middle), and T2 = 14 ps (right). The
thick black line shows the average over 10 randomly chosen
realizations; the other (thinner) lines are randomly chosen
results of individual runs.
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plane has to be drawn randomly at each position and translated
into an initial phase of P.

In our test simulations, we use the (realistic) set of para-
meters: τd = 76 ps, τr = 2.7 ps, (τrτd)

1/2 = 14.4 ps, and Nex =
3 � 108, resulting in Nc ≈ 3.46 � 108. In this parameter regime,
weak oscillatory SF (one peak with an oscillatory tail) should be
observed for T2 = 100 ps, and for T2 = 14 ps, ASE is expected
(see Figure 1 of Maki et al.33 for the delineation of the regimes).

The results for simulations with T2 = 100, 18, and 14 ps are
shown in Figure 8. For a dephasing time of T2 = 100 ps, we see
weak oscillatory SF; for T2 = 18 ps, we find SF with random
modulations; and for T2 = 14 ps, we find ASE, as expected.33

These results confirm that the second-order in time formulation
is a valid approach to a Langevin noise description in the four-
level gain model.

Determination of Effective Electromagnetic Parameters. To deter-
mine experimentally accessible physical characteristics of (gain-
enhanced) plasmonic nanostructures and metamaterials, we
perform ultrafast time- and space-dependent pump�probe
calculations, injecting short pulses with planar wavefronts for
both the pump and probe fields onto the structure and deter-
mine via Fourier transformation spectrally resolved transmis-
sion and reflection spectra (local as well as spatially averaged).
From the complex transmission t(ω) and reflection r(ω) coeffi-
cients, we can then calculate the spectral energy fluxes expressed
in the transmission T(ω) = |t(ω)|2, reflection R(ω) = |r(ω)|2, and
absorption A(ω) = 1� T(ω)� R(ω). Adopting themethodology of
Smith et al.,25 one may extract effective electromagnetic para-
meters from the complex transmission, reflection, and absorption
spectra. Retrieving these parameters allows one to examine the
dispersion and signs of the real and imaginary parts of the
homogenized refractive index, permittivity, and permeability.

The standard retrieval method is a general methodology
for extracting the effective-medium parameters of a meta-
material,34 making no assumption about the medium being
either absorbing or amplifying. However, while this method is
inherently applicable to active metamaterials, the sign of the
retrieved index is usually chosen by requiring that Im(neff) g 0.
Clearly, in the presence of gain Im(neff) can be negative, and this
may complicate (but does not invalidate) the retrieval proce-
dure. In that case, the causal and physically meaningful nature
of the retrieved parameters has to be verified by checking
whether Kramers�Kronig relations are obeyed35;a comple-
mentary methodology that has been applied successfully to
loss-compensated metamaterials.10�12,19 Yet, in the case of
strong amplification (below the lasing threshold), as noted in
the main text, it is not always possible to extract spectrally
continuous effective-medium parameters.12
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