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Evanescent gain for slow and stopped light in negative refractive index heterostructures
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We theoretically and numerically analyze a five-layer “trapped rainbow” waveguide made of a passive negative
refractive index (NRI) core layer and gain strips in the cladding. Analytic transfer-matrix calculations and
full-wave time-domain simulations are deployed to calculate, both in the frequency and in the time domain, the
losses or gain experienced by complex-wave-vector and complex-frequency modes. We find excellent agreement
between five distinct sets of results, showing that the use of evanescent pumping (gain) can compensate the losses
in the NRI slow- and stopped-light regimes.
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The ability to stop and store optical pulses could usher in a
range of fundamentally new and revolutionary applications,1,2

but the challenges encountered in our efforts to stop light are
formidable. This highly unusual state for an electromagnetic
wave refers to the situation where the light wave completely
stops despite the absence of any dielectric or other barriers
in the directions where it could propagate. Unlike the con-
finement or trapping of light inside a dielectric cavity, where
one cannot spatially separate optical bits of information, a
stopped-light structure would allow for sequentially stopping
and storing spatially separated optical bits, thereby potentially
leading to all-optical memories.1,2 Unfortunately, stopping of
light cannot be obtained with static (nonswitchable) periodic
structures, such as photonic crystals or coupled-resonator
optical waveguides, owing to their extreme sensitivity to
disorder, which invariably destroys the zero-group-velocity
(ZGV) point(s).2 With atomic electromagnetically induced
transparency one coherently imprints the shape of an optical
pulse into an electronic spin excitation, i.e., light is “stored” but
not stopped because at the ZGV point all photons are converted
into atomic spins and light is completely extinguished.3

A method that could allow for true stopping of light
in solid-state structures and at ambient conditions was first
suggested in 2007.4 Instead of relying on periodic back
reflections or on resonances, the deceleration and stopping
of light was therein based on the use of negative bulk,
disorder insensitive,5 electromagnetic parameters in waveg-
uide heterostructures. In the tapered setup4 a given light
frequency stops at a predefined point inside the waveguide.
The physical space occupied by the stopping of different light
frequencies depends on the angle of the adiabatic taper (e.g.,
see Ref. 6). In the uniform configuration7 an “optical bit” is
stored at the point where the incident light beam evanescently
hits the negative-index waveguide. Here, the physical space
occupied by each individual bit and the density of the stored
information are solely determined by the width/divergence of
the incident light beam (e.g., a laser beam, the tip of a scanning
microscope, etc).

A central task in this method of stopping and storing
light is to study whether the losses associated with the
use of negative refractive index (NRI) metamaterials can be
overcome. Although a series of recent works8 has shown that
losses in active “fishnet” metamaterials can be compensated,
the considered structures were very thin in the longitudinal

direction, essentially being two dimensional and spatially
dispersive. Furthermore, the dispersion relations and restric-
tions obeyed by light in fishnet metamaterials are completely
different from those in trapped rainbow NRI waveguides. As
a result, it is not clear until now whether in such waveguides
losses can, even in principle, be overcome in a slow-/stopped-
light regime where the effective refractive index experienced
by light is negative—even when use is made of gain media.9

In this Rapid Communication, on the basis of analytical
calculations and rigorous numerical simulations, we show
how the incorporation of thin layers of a gain medium in a
passive trapped rainbow heterostructure can compensate the
losses while simultaneously preserving the negative effective
refractive index of the guided slow or stopped light. The
specific structure considered is illustrated in Fig. 1. It consists
of a NRI core layer bounded symmetrically by two thin gain
layers that evanescently feed the supported guided modes.11

The whole structure is embedded in air.
When gain or losses are present in one or more of

the layers of a heterostructure the supported guided modes
become complex. Apart from the usual complex-wave-vector
(real-frequency) solutions to the characteristic equation, one
may then also retrieve complex-frequency (real-wave-vector)
solutions.12 For instance, it is well known from prism cou-
pling to uniform metallic films that fixing the incident light
frequency and sweeping the angle of incidence results in the
excitation of complex-k surface-plasmon polaritons (SPPs)
exhibiting back bending in the ω-k dispersion diagram. In
contrast, keeping the incident angle constant and varying the
frequency of the incident light gives rise to the excitation of
complex-ω SPPs with distinct reflectivity dips and no back
bending.12 The imaginary part of a complex-ω solution relates
to the temporal losses experienced by a light pulse.12

A numerical framework that is well suited for the study
of these modes is the finite-difference time-domain (FDTD)
method.13 With this method one can accurately launch the
desired negative phase velocity (backward) mode into the
waveguide and directly investigate its temporal losses.14 In
our simulations we deploy a modified total-field/scattered-field
formulation,13 with the excitation plane oriented perpendicu-
larly to the central axis of the heterostructure of Fig. 1, and
the amplitudes of the Hz- and Ex-field components along
the plane being set to match the transverse profile of the
backward TMb

2 mode. The central frequency of the injected
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FIG. 1. (Color online) Illustration of the NRI slow-light het-
erostructure considered in the analyses. Also shown is a characteristic
snapshot (from the FDTD simulations) of the propagation of the
excited (dominant) slow-light mode. See also Ref. 10.

pulse is fixed to 400 THz (λ0 = 750 nm), the side of the
square FDTD cell has a length of �x = λ0/200 = 3.75 nm,
and the Courant value is set to 0.7. The width of the
core layer is wc = 0.35λ0 = 262.5 nm, while the width of
the gain layers in the cladding is wg = 0.25λ0 = 187.5 nm
whenever they are incorporated into the heterostructure. We
model the passive NRI of the core layer using a broad-
band Drude response (see Ref. 15, Chap. 1.3)]: nD(ω) =
1 − ω2

p/(ω2 + iω�D), with ωp = 2π × 893.8 × 1012 rad/s
and �D = 0.27 × 1012s−1. The frequency response of the
permittivity of the gain layer obeys a Lorentzian dispersion:
εL(ω) = ε∞ + �εω2

L/(ω2
L − i2�Lω − ω2), with ε∞ = 1.001,

�ε = – 0.0053, ωL = 2π × 370 × 1012 rad/s, and �L =
1014 s−1, resulting in a line shape that is similar to that produced
by, e.g., an electronic transition in a quantum dot.16

When the losses and gain are relatively small, as those used
in the considered NRI heterostructure, the imaginary part of
the complex-ω solution is proportional to the imaginary part
of the complex-k solution by a factor that is close-to-equal to
the group velocity.17 Hence, in this case, one has an additional
opportunity (see Fig. 4 later on) to check the accuracy of
the obtained numerical results by examining whether such a
proportionality is fulfilled. Following the standard theory of
active optical waveguides,18 we assume that the saturation
intensity for the gain medium is sufficiently large, leading
to a correspondingly large value of the critical gain-length
product beyond which gain depletion owing to amplified spon-
taneous emission (ASE) can become significant.19 Operation
sufficiently below this limit implies that we are in the linear
regime where no gain depletion occurs, and that the effect of
ASE on the signal gain may be disregarded, in accordance
with analogous studies of active optical structures.18,20,21

The mode-launching methodology described above allows
for the clean excitation and study of individual modes along a
uniform NRI heterostructure. However, it cannot be applied at
exactly the light-stopping point because therein the injected
light stays localized at the excitation plane. To study the
loss compensation in that regime, we have developed a
frequency-domain transfer-matrix method (TMM) capable of
identifying both the complex-ω and complex-k modes of
the multilayer NRI heterostructure. The method derives the
dispersion equation and uses the argument principle method

to locate and isolate its zeros either on the complex-ω or the
complex-k plane.22 Suitable conformal mappings are deployed
in both cases to unfold the four-sheeted Riemann surfaces
associated with the characteristic equations. Upon isolation of
a zero, the Newton-Raphson method is used to pinpoint and
track its location on the complex plane. The technical details
of the overall procedure will be presented elsewhere.

In our analyses we consider the following four cases: (I)
neither loss in the NRI core layer (�D = 0) nor gain in the
cladding layers (the cladding is only air), (II) loss in the NRI
core layer but no gain in the cladding, (III) both loss in the
NRI region and gain in the cladding strips, and (IV) the NRI
core layer is modeled as being lossless and gain is used in the
two cladding layers.

In order to validate the causal dynamics of the injected
pulse with the FDTD method we created an animation of
its propagation along the considered heterostructure.10 From
there one may directly see that first, a single slow-light
guided mode is excited and second, the mode experiences an
effective refractive index neff with a negative real part, having
antiparallel phase and group velocities.

Successive snapshots of the Gaussian pulse propagating
down the NRI waveguide for cases I–IV are depicted in
Fig. 2. We see that for case I (neither loss nor gain) the
intensity of the guided pulse decays with distance [Fig. 2(a)].
This reduction is not a result of the pulse losing energy
but arises entirely owing to group-velocity dispersion, which
causes the guided slow pulse to broaden, thereby leading to a
gradual decay in amplitude. Figure 3 (red line and downward
triangles) confirms the fact that energy is conserved, as the
absorption coefficient α = 2ω Im{neff }/c (spatial losses) is
zero throughout the frequency spectrum of the pulse. The
complex neff shown in Fig. 3 for all considered cases is
extracted by recording the amplitude of the pulse at two fixed
points along the central axis of the waveguide over time, and
then dividing the Fourier transforms of the two time series.13,14

When dissipative loss is introduced into the NRI core (case II)
the amplitude of the pulse decreases even further compared to

FIG. 2. (Color online) Snapshots of slow-light pulse propagation
along the central axis of the considered waveguides for (a) case I
(neither loss nor gain); (b) case II (loss but no gain); (c) case III
(both, loss and gain); and (d) case IV (gain but no loss). In all cases
propagation is from left to right.
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FIG. 3. (Color online) Comparison between FDTD (symbols) and
TMM (lines) calculations of the absorption coefficient α (spatial
losses) versus frequency for the TMb

2 mode in case I (red line,
downward triangles), case II (blue line, right triangles), case III (green
line, squares), and case IV (orange line, circles). The inset depicts the
frequency dispersion of Re{neff } in all four cases.

case I [Fig. 2(b)]. Figure 3 (blue line and right triangles) shows
that now Im{neff } > 0 for all frequencies, as expected.

By introducing gain in the cladding layers (case III) we
evanescently pump the pulse11 and allow for the compen-
sation of its propagation losses [compare Fig. 2(c) with
Fig. 2(a)]. Indeed, Fig. 3 (green line and squares) shows that
at approximately 400 THz (central frequency of the pulse)
the imaginary part of the effective refractive index becomes
zero, while for smaller frequencies Im{neff } assumes negative
values (amplification). Thus, in case III there is a continu-
ous range of frequencies (f < 400 THz) where we simulta-
neously have Re{neff } < 0 (inset in Fig. 3) and Im{neff } < 0
(green line and squares for f < 400 THz in Fig. 3). We note
that the optogeometric parameters of the heterostructure ha-
ve been chosen such that a light pulse experiences almost
the same frequency dispersion for all cases, with differences
between the various Re{neff } (cases I–IV) being indiscernible
at the linear scale of the inset in Fig. 3. For all cases
presented we find that the parameters retrieved from the FDTD
simulations (symbols) are in excellent agreement with those
calculated using the TMM (lines).

To further confirm that light amplification is, in principle,
possible in the negative index slow-light regime we “switch
off” the losses, while maintaining the gain in the cladding
strips. Figure 2(d) shows that in this case (IV) the negative-
phase-velocity slow pulse is amplified while propagating along
the waveguide. In particular, it is seen that the pulse amplitude
at around x = 40 μm exceeds its initial amplitude despite the
fact that the pulse has been broadened due to group-velocity
dispersion. This conclusion is further confirmed by finding that
Im{neff } < 0 throughout the spectrum of the Gaussian pulse,
as shown in Fig. 3 (orange line and circles).

Next, we examine how the spatial and temporal losses (or
gain) experienced by both the central frequency of the pulse
and the pulse as a whole vary with core thickness (Fig. 4). The
complex-ω solutions can be calculated with the FDTD method
by recording the spatial variation of the field amplitude along
the central axis of the heterostructure at two different time
points, and then dividing the spatial Fourier transforms of the

FIG. 4. (Color online) Comparison between FDTD (symbols)
and TMM (lines) calculations of the temporal losses/gain and group
velocity of the complex-ω and complex-k solutions with varying
core thickness (case III). Shown are the group velocity (vg) of the
complex-ω solutions (black solid line, black squares), the group
velocity of the complex-k solutions (red dashed line), the imaginary
part of the complex-ω solutions (blue solid line, blue squares), and
the imaginary part of the complex-k solutions multiplied by vg (green
dashed line, green circles). The inset shows the rate of energy loss (or
gain) for the whole wave packet (purple triangles) with varying core
thickness as calculated by the discrete Poynting’s theorem within the
FDTD method.

two longitudinal spatial profiles. The rate of energy change
for the whole wave packet (total loss or gain) is calculated
using the discrete Poynting’s theorem integrated over a spatial
region sufficiently wide to contain the pulse.

Figure 4 shows that for core thicknesses above 262 nm the
central frequency of the pulse experiences loss. For smaller
thicknesses, for which the amplitude of the field increases
inside the gain region, we find that the gain supplied by the
cladding strips overcompensates the loss induced by the core
layer. At a core thickness of 262 nm the central frequency
experiences neither gain nor loss, while the wave packet as a
whole experiences gain (inset in Fig. 4). In all cases we have
verified that Re{neff } < 0 (data not shown here).

Overall, we find excellent agreement and consistency
between five distinct sets of results: the spatial losses/gain
(multiplied by the group velocity17) for the central frequency
as calculated by the FDTD (green circles) and the TMM (green
dashed line), the temporal losses/gain for the central frequency
as calculated by the FDTD (blue squares) and TMM (blue
solid line), and the temporal losses of the whole wave packet
as calculated by the FDTD method (purple triangles in the
inset of Fig. 4). This fact provides further evidence that loss
compensation is, in principle, possible in the slow-light NRI
regime, including the light-stopping point at around 137 nm.

Finally, we note that for core thicknesses smaller than
around 140 nm the group velocity of the complex-k mode
characteristically differs from that of the complex-ω mode
(red dashed and black solid lines in Fig. 4, respectively).
As with the case of SPPs in plasmonic films,12 the group
velocity of the complex-k solutions exhibits a “back bending,”
never becoming zero, while that associated with the complex-ω
solutions may reduce to zero or become negative (antiparallel
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phase and group velocites), even in the presence of excessive
gain (or losses).

In conclusion, by studying in the time and frequency do-
mains the complex-ω and complex-k modes in NRI slow-light
waveguides with gain in the cladding region, we have shown
that it is possible to compensate the dissipative optical losses.
This geometry allows for lossless or amplified slow/stopped
light in the regime where the real part of the effective refractive

index experienced by the guided modes remains negative. We
believe that this work could aid the realization of lossless
metamaterial waveguides to be used in a wealth of photonic
and quantum optics applications.
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