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generalized left-handed heterostructures
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The authors present an exact, analytic study of oscillatory modes guided by generalized asymmetric
two-dimensional planar heterostructures with negative refractive index in either the core or the
cladding. It is shown that, in sharp contrast to normal dielectric configurations, these waveguides
always possess a frequency region where the second-order oscillatory mode may exist alone and
allow for attaining zero group velocity under weak guidance conditions. In addition the mode has
a field distribution that renders it excitable with an end-fire approach, making such structures
attractive for applications requiring slow light. Advantages compared to previous methods of
slowing or stopping light are discussed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2387873�

Structures simultaneously exhibiting negative permittiv-
ity and permeability were first analyzed by Veselago.1 He
showed that their refractive index is negative and that the
vectors E, H, and k of a monochromatic plane wave inside
them form a left-handed triad. Because of these properties,
such materials are often termed as negative-index �NI� or
left-handed �LH� materials, as opposed to ordinary media
that are always right handed �RH�. Recently, these media
have garnered revived interest after the proposal of Pendry et
al. that a metamaterial possessing negative magnetic perme-
ability in the microwave region could be constructed with a
pair of split-ring resonators.2

Important potential applications of LH materials in op-
tics and microwaves, such as the possibility to create super-
resolving lenses or to improve the performance of biosensor-
ing devices, prompted additional investigations into the
properties of specific LH heterostructures.3,4 From this re-
search it was shown that LH waveguides support two classes
of waves: oscillatory or waveguide modes �OM�/fast waves,
which are also found in regular dielectric slab structures, and
a rich variety of surface plasmon polariton modes �SPP�/
slow waves. An analytic study of the latter5 showed that up
to 30 bound SPPs can exist in a generalized LH slab wave-
guide for all choices of optogeometrical parameters. Al-
though approximately a third of the SPP solutions allow for
attaining zero group velocity, their inherent sensitivity to
small variations of the media interfaces5 may limit their prac-
tical use. For this reason, oscillatory modes, which generally
have their maxima inside the waveguide core, are more suit-
able for most conceived applications, including slow light.
Nonetheless, they were, until now, described only qualita-
tively, following ad hoc graphic solution approaches.3,4 In
this manner, relevant modal properties were either not re-
vealed or not conclusively proven and, importantly, explicit
expressions for the cutoff conditions of each mode have not
been established yet.

In this letter we report on an extension of waveguide
mode theory that considers an asymmetric three-layer slab

heterostructure in which either the guiding region or the
cladding region may have a negative refractive index. We
derive dimensionless, closed-form expressions for the cut-
off�s� of the investigated oscillatory modes that allow for the
identification of their existence regions. The modes with
negative energy flux that give rise to negative group velocity
are identified via an explicit expression for the cycle-
averaged total power flow Ptot in the guide. Based on this
treatment we rigorously prove that, with judicious choice of
parameters, there is a frequency region where the second
mode can, at the same time, exist alone and attain zero group
velocity. Moreover, we show that the inverted �LH-RH-LH�
arrangement supports similar modes as the RH-LH-RH het-
erostructure but with opposite power flux. It is believed that
these are the only slab waveguide structures utilizing homo-
geneous, isotropic6 media that have the potential for single-
mode operation in the “slow-light regime.”

In the analysis that follows we consider the geometry
illustrated in Fig. 1, where all media are assumed to be
lossless,7 homogeneous, and isotropic. We shall be con-
cerned primarily with p-polarized �TM� waves, in which the
magnetic field is directed along the y axis. First, we investi-
gate the case where the core is LH with thickness 2�,
bounded asymmetrically by two RH media that satisfy n2
�n3. The fields in the guide consist of counterpropagating
forward and backward modes trapped within the core by
total-internal reflection. For wave guidance to occur the
wave components of both types of modes must satisfy the

a�Electronic mail: k.tsakmakidis@surrey.ac.uk
FIG. 1. �Color� Illustration of the asymmetric left-handed planar
heterostructure.
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total-internal reflection condition. This condition can be
stated as �n1 � �neff�n2, where neff is the effective index of
the mode. We point out here that there is a marked contrast
between the present case and that of SPP waves: for the latter
case, we require neff�max��n1 � ,n2� as a result of the some-
what different solution ansatz to the wave equation.5 Match-
ing the Ez and Hy fields at the boundaries yields the follow-
ing dimensionless characteristic equation for oscillatory
modes in generalized LH slab waveguides:

�k0 =
1

2�n1��1 − ����b
	arctan
 ��b

�1 − b2�
+ arctan
 ��b

�t2 − b2� + m�� , �1�

where, similar to a recent work,5 the following ratios are
introduced:

b�neff� =
U

V2
= 	1 − �neff/n1�2

1 − ����
�1/2

, �2�

t =
V3

V2
= 
1 − ����

1 − ����
�1/2

, �3�

with ��=�r2 / ��r1�, ��=�r2 / ��r1�, ��=�r3 / ��r1�, ��

=�r3 / ��r1�, and k0 being the free-space wave number. In this
work, the two V parameters are defined as V2��k0�
=�k0��r1�r1−�r2�r2�1/2 and V3��k0�=�k0��r1�r1−�r3�r3�1/2,
whereas U=��=�k0��r1�r1−neff

2 �1/2, with � standing for the
transverse component of the wave vector in the core. It is
noteworthy that similar dispersion expressions, cast in an
“inverted” form that is obtained following a zigzag-ray
model analysis, describe oscillatory modes in standard asym-
metric optical waveguides.8 The parameters used in Eqs. �2�
and �3� here, though, obey the restrictions 0	b	1 and t
�1. The equalities for b hold at the mode-cutoff points. For
each mode �m=0,1 , . . . � and refractive index distribution,
the dispersion diagrams, neff versus the reduced slab thick-
ness �k0, may be directly obtained by noting that b in Eq. �1�
is a function of neff, which in turn increases monotonically
from n2 to �n1�.

In discussing the cutoff conditions, it is important to rec-
ognize the fact that several double mode-degeneracy points
can, in principle, appear in the dispersion diagrams since
some of the modes in the LH heterostructure will be back-
ward propagating, having antiparallel phase �
ph� and group
�
g� velocities. The cycle-averaged total power flow Ptot at

these �cutoff� points will vanish. It is therefore useful to de-
rive a general closed-form expression for Ptot. Integrating the
z component of the complex pointing vector over the guide’s
cross section,5 considering Eq. �1�, we obtain the following
after some algebraic manipulations:

P3 = C
1

��r1�
��

��W3
, �4a�

P1 = C
��

��r1�
W3

2 + ��
2U2

��
2U2 
 ��W2

W2
2 + ��

2U2 +
��W3

W3
2 + ��

2U2 − 2� ,

�4b�

P2 = C
��

��r1���W2

��
2

��
2

W3
2 + ��

2U2

W2
2 + ��

2U2 , �4c�

where Pi �i=1,2 ,3� is the power confined in the waveguide
i layer �Fig. 1�, � and Wj �j=2,3� the mode longitudinal
propagation and decay constants, respectively, and C an ar-
bitrary positive constant. It is inferred from Eqs. �4a�–�4c�
that the net power flow can become negative in the core
layer, but remains positive in the cladding regions. Calculat-
ing the total power Ptot=i=1

3 Pi, in terms of the dimension-
less parameters defined before and the reduced slab thick-
ness, we arrive at

Ptot = C
W3

2 + ��
2U2

��
2U2

�n1
2��k0�2 − U2�1/2

��r1� 
 ��

W2

V2
2

W2
2 + ��

2U2

+
��

W3

V3
2

W3
2 + ��

2U2 − 2� . �5�

To facilitate the discussion of the mode-cutoff relation-
ships, we first note from Eq. �1� that the upper branches �b
→0�, for all modes other than the fundamental �m�0�,
show no upper cutoff thickness, since b→0 in this case
yields �k0→�. The situation is reminiscent of OMs in nor-
mal dielectric slab structures and is illustrated in Fig. 2�b�.
However, for the fundamental mode �m=0� inspection of Eq.
�1� reveals a somewhat unusual behavior and a low cutoff
point given by

���k0��low
m=0 =

1

2�n1�
 ��

�1 − ��
2��

2
+

��

�1 − ��
2��

2 � . �6�

At this transition point, depicted in Fig. 2�a�, the SPP-1
mode5 transforms continuously to the m=0 oscillatory mode,
whose field pattern closely resembles that of a surface wave.

FIG. 2. �Color� �a� Variation of SPP and fundamental oscillatory mode �OM� effective index neff with the reduced slab thickness �k0 for ��=1.1, ��=0.5,
��=1.15, ��=0.6, �r1=2, and �r1=1.2. �b� Variation of oscillatory mode effective index with reduced slab thickness for ��=��=0.05, ��=��=0.08, and
�r1=�r1=6. �c� Variation of oscillatory mode normalized power flow P with reduced slab thickness for the parameters defined in �b�.
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In Ref. 9, the existence of such cutoff point for the m=0
oscillatory mode in asymmetric three-layer LH heterostruc-
tures has been associated with the appearance of a complete
three-dimensional photonic band gap. Critically, the funda-
mental mode also exhibits an upper cutoff that can be calcu-
lated as

���k0��upper
m=0 =

1

2�n1��1 − ����
	atan
 ��

�t2 − 1
�

+ �
m +
1

2
�� . �7�

This relationship also describes the upper cutoff point of all
lower branches in the mode-dispersion diagrams. An exem-
plary result of such curves for a “slow-light oriented” choice
of optogeometrical parameters is shown in Fig. 2�b�, with the
insets illustrating the corresponding field profiles. For the
sake of clarity, the dispersion curve of the fundamental TM1
mode is not shown here, since the upper cutoff point of this
mode is ���k0��upper

m=0 �0.187 63, i.e., well below the “degen-
eracy” point of the TM2 branch, which occurs at ���k0��deg

m=1

�0.310 47. The proposed nomenclature for recognizing the
oscillatory modes consists of a pair of letters to identify the
polarization, followed by a subscript to track the number of
nodes in the core region and a superscript to designate that
the mode is forward �f� or backward �b�, i.e., TMm+1

f/b for the
mth-order mode.

Figure 2�c� reports the variation of the normalized power
flow P= Ptot / ��P1 � + �P2 � + �P3 � � �Ref. 5� with reduced slab
thickness for the previous solutions. One may notice that the
two branches of the TM2 mode merge at a critical slab thick-
ness. At this �cutoff� point the total power Ptot of the result-
ing degenerate mode vanishes and the group velocity reduces
to zero.10 An exact expression for this cutoff point cannot be
given except in the somewhat simplified form of Ptot=0.
However, for every mode �m=1,2 , . . . � this point can be
swiftly calculated following the steps for the derivation of
the dispersion diagrams outlined above and requiring
�k0�neff�→min.

Since the TM1 and TM2
f modes always show an upper

cutoff, given by Eq. �7�, we conclude that there is a unique
and experimentally intriguing region, highlighted by the gray
area in Fig. 2�c�, where the backward TM2

b mode can, at the
same time, exist alone and allow for attaining very small or
zero group velocity via adiabatically tapering to the degen-
eracy point. Under somewhat stronger guidance conditions,
i.e., ���� ,����→0 for constant cladding indices, it is further
possible to altogether suppress the TM2

f branch, thereby in-
creasing the operable width of the highlighted region from
approximately 0.134 to 0.274, for the case shown in Fig.
2�c�.

Remarkably, similar modes with reversed power flow are
supported by the inverted heterostructure, i.e., one with a RH
core �e.g., air� and LH claddings. Indeed, by again assuming
a waveguide-mode ansatz for Hy, i.e., oscillatory field in the
core and exponentially decaying field in the cladding re-
gions, and requiring continuity of the tangential field compo-
nents at the two interfaces, we find that the characteristic Eq.
�1� remains unchanged, and so does the expression for the
sole magnetic field component Hy. In a similar vein, it is
found that for the new expressions of the cycle-averaged
power flow in each layer, one only needs to replace ��r1� in

Eqs. �4a�–�4c� with −��r1�. Based on the explicit form of Eq.
�1� and since the V parameters defined above are independent
of the refractive index sign distribution, it is inferred that all
modal properties of the RH-LH-RH arrangement, previously
analyzed, are replicated by its “dual” counterpart. It appears
at this time that this is the only pair of planar waveguides
constructed from isotropic media that can do so. This prop-
erty also provides increased flexibility in slow-light
waveguiding design utilizing LH materials.

In summary, on the basis of an exact, analytic appraisal,
it has been shown that an asymmetric planar waveguide uti-
lizing LH media in either the core or the cladding can sup-
port single-mode operation in the slow-light regime. The in-
vestigated scheme, relying on sufficient decrease of slab
thickness, combines the remarkably simple approach for
slowing down light suggested in Ref. 11 with the use of
efficiently excitable waveguide modes used in Ref. 12, since
the profile of the TM2 solution here closely matches that of a
single-mode fiber. Moreover, the heterostructures investi-
gated here can be designed to be monomode in the desired
frequency range.13 The control of the group velocity is
achieved by varying the core thickness rather than by vary-
ing the temperature or field intensity.12,14 The same is true for
the light in- and outcoupling, which may be satisfactorily
adjusted by adiabatically tapering the size of the waveguide
core. We stress that this mechanism for decelerating light
does not directly rely on refractive index resonances but
merely on the exchange of power between the core and clad-
ding regions, as indicated by Eqs. �4� and �5�. Hence, broad
band slow light can be obtained provided that the negative
material parameters are designed to exist over relatively
large bandwidths15 at optical frequencies.16

This work is partially supported by the Engineering and
Physical Sciences Council �EPSRC�, UK.
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