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Systematic Modal Analysis of 3-D Dielectric
Waveguides Using Conventional and High
Accuracy Nonstandard FDTD Algorithms

Kosmas L. Tsakmakidis, Christian Hermann, Andreas Klaedtke, Cécile Jamois, and Ortwin Hess

Abstract—A robust methodology is presented for the accurate
modal analysis of three-dimensional dielectric waveguides with
the finite-difference time-domain (FDTD) method. We investigate
the propagation of well-defined vector modes along strongly
guiding rectangular waveguides. Eigensolutions of the vectorial
wave equation are utilized in the simulations to accurately launch
the fundamental and higher order eigenmodes. Results for their
FDTD-computed propagation constant are found to be in excel-
lent agreement with existing mode-solving techniques. Improved
accuracy or significant computational savings are achieved when
the nonstandard FDTD concepts are incorporated in the context
of the present analysis.

Index Terms—Finite-difference time-domain (FDTD) method,
modeling, nonstandard finite-difference (NSFD), optical wave-
guide.

I. INTRODUCTION

I N THE design and performance assessment of modern
photonic devices, popular numerical techniques, such as the

beam propagation method (BPM) or the coupled-mode theory
(CMT), are often rendered insufficient. A viable modeling
option then can be the three-dimensional (3-D) full-wave fi-
nite-difference time-domain (FDTD) method based directly on
Maxwell’s equations. Typical examples of such applications in-
clude the investigation of the in- and out-coupling of a strongly
guiding rectangular waveguide to a planar photonic crystal
(PPC) [1] or the study of several travelling-wave (TW) devices
such as photodetectors, modulators, and phototransistors [2].
The high index contrast in the planar heterostructure and the
wide-angle scattering at the horizontal plane of the PPC can
render the use of the BPM problematic. The CMT will be
ineffective as well since it usually considers the propagation
of the first two guided modes and neglects the coupling to the
radiation modes [3].

In the FDTD analyses of both classes of applications, the pre-
cision in the excitation of specific eigenmodes inside the 3-D
integrated waveguide is of crucial importance. The absence of
exact solutions usually leads to the employment of less accurate,
semianalytical techniques, such as the effective-index method,
for the provision of the two-dimensional (2-D) excitation pro-
file, which in practice results in the contamination of the simu-
lation outcomes with unwanted modes. As a result, for the 3-D
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Fig. 1. (a) Spatial arrangement of the generalized 3-D Laplacian operators.
(b) The elements of the nonstandard difference operator ~d . A suitable
weighting component is shown for the filled points in each side of the element.

FDTD modeling of several photonic devices that involve rect-
angular waveguides, there is currently a need for a robust and
general methodology to excite specific eigenmodes.

The purpose of this letter is dual: First, we incorporate
an accurate fully vectorial wave equation-based excitation
scheme in the 3-D FDTD simulations that manages to launch
accurately the desired electromagnetic eigenmodes inside
the planar waveguiding heterostructure. The precision in the
mode excitation, however, is not sufficient to provide accurate
simulation outcomes, particularly for problems that involve
propagation over long distances, owing to the cumulative nature
of the induced numerical dispersion errors. To overcome that,
a highly accurate nonstandard FDTD (NS-FDTD) strategy is
adopted which proved to require significantly less computa-
tional resources compared to the classical Yee algorithm for the
same level of accuracy, as discussed in Section II.

II. NS-FDTD SIMULATION OF THE 3-D
DIELECTRIC WAVEGUIDE

Critical for the NS-FDTD formulae [4], [5] is the introduc-
tion of generalized 3-D Laplacian operators, ,
shown in Fig. 1(a). Focusing on the derivation of , we start
by introducing the parameters: , ,
and , where is a real number representing the
cell size and

(1)
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with being an electromagnetic field component in 3-D
space. Denoting with the values of the func-
tion at the points shown in Fig. 1(a), we have

(2)

Similarly: , , with analo-
gous expressions for the remaining points. Using series expan-
sions like the one in (2) and the identity in (1), we obtain

(3)

from which we can define the second-order Laplacian as

(4)

Likewise, the second-order operators and of Fig. 1(a)
can be derived, as well as higher order Laplacians. We can
efficiently combine to create an optimal
Laplacian operator which equals a suitably weighted sum
of and is sixth-order accurate in space for a reference
frequency [4]. Decomposing into finite-difference operator
products and employing nonstandard stipulations, yields the
following spatial formulae that preserves the accuracy
[Fig. 1(b)]:

(5)

with [4], being the wavevector that
corresponds to the central frequency of the input source and

positive weighting components fulfilling
for numerical consistency. For the other two di-

rections analogous difference operators can be formed which,
when inserted into the or -field updating equations, result
in a significantly ameliorated FDTD scheme with regard to nu-
merical dispersion and anisotropy

Very crucial for the simulations herein is the formulation of
the nonstandard uniaxial perfectly matched layer inside which
extend the waveguide layers. For the sake of brevity, only
the expression for the advancement of the component (in
Heaviside– Lorentz units) is given below

(6)

with , the velocity of light in
vacuum, and both finite-difference operators, now involving 18
instead of two points of a typical formulation [6].

For the acquisition of the 2-D excitation profiles, we note that
in rectangular dielectric waveguides, there are no precise closed-

Fig. 2. Strongly guiding planar heterostructure coupled to a PPC line-defect
waveguide. Also shown is the precalculated excitation profile for the generation
of the E mode inside the rectangular waveguide.

form expressions for the cross-sectional shape of the modes,
owing to the peculiar behavior of the electromagnetic fields near
the dielectric corners where they diverge to a small degree [7]. A
sufficiently accurate numerical way to overcome this limitation
is via computing the - or -field eigenvectors of the vectorial
wave equation that takes into account the polarization, vector
properties, and discontinuity of the guided modes at the dielec-
tric interfaces, including the corner regions [8]. Upon obtaining
the 2-D field distributions in this manner, a proper spatial inter-
polation is necessary to match the Yee grid. Such an approach
is essential, particularly for FDTD in-coupling studies, and an
exemplary result for the dominant component of the eigen-
mode is illustrated in Fig. 2. The associated propagation con-
stant is obtained from the eigenvalue of the wave equation and,
for sufficiently small mesh size, the error in its estimation can
be made very small (e.g., less than 0.01%) [8].

The structure on which the overall methodology was tested is
a multimode rectangular waveguide having ,

, width m, and very small core thickness
nm. Our choice is motivated by the use of high index con-

trast waveguides in existing photonic devices involving PPC or
TW structures. The length was chosen to be sufficiently large,

m, to check the precision in the single-mode excita-
tion at the far end of the waveguide. We have examined the dy-
namical propagation of the first three modes, generated with
the appropriate initial profiles. The investigated spectral range
is sufficiently above the cutoff frequency of the third eigenmode
(to ensure accurate computation of the propagation constant and
mode profile with the mode-solver). Using the effective-index
method, we have calculated this frequency to be THz.
For excitation, we used Gaussian pulses modulating a sinusoidal
carrier of frequency THz, which coincided with
the reference frequency in the nonstandard difference operators.
The computed values of in this study were: ,

, and
Fig. 3 shows the extracted propagation constants over the

bandwidth of the corresponding excitation pulse, which were
obtained by dividing the FFTs of the pulse’s time history at
two fixed observation points along the core [6, Ch. 15–16].
Note the excellent agreement between the values predicted by
the NS-FDTD and the fully vectorial mode solvers for all three
eigenmodes that confirms the precision of their excitation.
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Fig. 3. Longitudinal propagation constants of the first three E eigenmodes:
Comparison between fully vectorial mode-solver (dashed line) and NS-FDTD
(symbols).

Fig. 4. (a) Relative error in the NS-FDTD and FDTD-computed propagation
constant of the fundamental. E eigenmode. (b) The same calculations as in
(a), but for E the eigenmode. (c) The corresponding calculations for E the
mode supported by the same structure as in both previous cases.

Fig. 4(a)–(c) illustrates the relative error, with respect to the
mode-solver, of the conventional and NS-FDTD. In each case,
it is found that the classical Yee scheme only attains the same
levels of accuracy, especially in the high-frequency range, when
the number of spatial grid points is increased by a factor of 6.5
with a corresponding significant increase in the computational
time, as expected. The increase in the computational time for
the NS-FDTD, however, is small due to the use of a 30%
larger time-step than the maximum allowed one in the standard
algorithm [4]. It is also verified that optimum performance for
this form of the NS-FDTD is achieved within a narrow region
around [9], where it is always found to be more accurate
than the usual Yee formulation.

III. CONCLUSION

An accurate methodology, utilizing a fully vectorial excita-
tion scheme, has been presented for the systematic analysis of
arbitrary planar heterostructures with the 3D-FDTD method.
Owing to the considerable reduction of the numerical dispersion
and anisotropy errors, significantly enhanced computational
performance has been demonstrated when the NS-FDTD for-
mulation is used.
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