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Abstract—We analyze the engineering of subwavelength
nanoantennas composed of anisotropic nanospheroids, for the
development of photonic devices. Instead of using conventional
isotropic dielectrics, we introduce resonant anisotropic nanoparti-
cles, allowing for shifting Kerker condition points further inside the
visible. To address this study, we construct a perturbation-based
discrete eigenfunction method, for the electromagnetic scattering
of a plane wave by a prolate or oblate uniaxial anisotropic spheroid.
The method is fast and yields the solution for the bistatic radar and
total scattering cross sections, which is valid for small eccentricities
of the spheroid. The validity of this technique is verified by the alter-
native general purpose discrete dipole approximation method. We
investigate the engineering of subwavelength nanoantennas due to
material and geometry shaping, like the change of anisotropy type,
anisotropy ratio, and deviation of the nanoantenna from sphericity.

Index Terms—Anisotropic, dispersive, nanoantenna, nanopho-
tonics, perturbation, spheroid, subwavelength, uniaxial.

I. INTRODUCTION

LATELY, there is a growing interest in exploiting the scat-
tering characteristics of resonant subwavelength photonic

nanostructures for the development of integrated optical devices,
like two-dimensional plasmonic arrays composed of patches and
rings for electric field enhancement [1], nanocylindrical arrays
for the degeneration of guided waves [2], or meta-optics de-
vices for manipulating optical waves [3]. Of particular interest
are dielectric subwavelength spheres, whose directional scat-
tering characteristics are employed in nanoantenna design. The
main platform material is Si due to its high refractive index
[4], [5], although Ge [6] and Cu2O [7] are also used. These
high-index dielectrics exhibit both electric and magnetic reso-
nances [8], and offer greater design flexibility in the nanoscale,
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in contrast to plasmonic-based particles [9]–[11], which are
characterized by intrinsic losses in the visible range. In particu-
lar, high-index dielectrics have been utilized for the composition
of nanoantennas through highly transparent Huygens metasur-
faces, or optical sensors and nonlinear devices [12]. High-index
silicon nanodisks embedded into low-index matrix have been
used to manipulate the directional scattering properties of the
nanoantenna [13], and individual spherical silicon nanoparticles
have allowed for tailoring the chirality of light [14]. Collective
near field interactions have been employed in the design of di-
rectional beams by utilizing near field power flow [15], and in
the design of metamaterials using superlattice structures based
on split ring resonators [16], or combined dielectric-metallic
structures composed of spherical-split ring resonators [17].

The majority of aforementioned works focus on spheri-
cal nanostructures. In some circumstances, however, scanning
electron microscopy (SEM) images reveal that the fabricated
nanoparticles exhibit slight deviations from the spherical shape
[5]. To account for the modification of scattering characteristics
due to these small deviations from sphericity, full wave finite-
difference time-domain (FDTD) simulations [5], and solution
of the wave equation in spheroidal coordinates [18], have been
proposed, where now the particle is modeled as a spheroid.
However, the application of numerical full wave techniques re-
quires extremely fine discretization and high CPU time to ob-
tain a meaningful result, whereas spheroidal wavefunctions are
characterized by cumbersome convergence and require careful
truncation of resulting infinite sets of equations [19], [20]. In
addition, these methods cannot distinguish accurately and fast
the response of such small deviations in shape, as an exact an-
alytical technique does. Moreover, the above works deal with
isotropic particles, a case which can also be tackled by well
known techniques [20]–[22]. On the contrary, the introduction
of anisotropy and the study of its effect on the properties of
resonant nanostructures are topics open to investigation.

These facts motivate us to extend the study of EM scatter-
ing by subwavelength isotropic nanospheres/nanospheroids to
anisotropic ones. In order to account for spheroidal shapes, we
apply a perturbation method capable of detecting small devia-
tions from sphericity. It is shown that these deviations lead to
significant shifts in magnetic/electric dipolar (MD)/(ED) reso-
nances, and in sequence in Kerker wavelengths, thus enabling
to tune the wavelength of the forward directional radiation, by

1077-260X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3888-5241
https://orcid.org/0000-0003-4054-6086
mailto:geokolezas@central.ntua.gr
mailto:zouros@ieee.org
mailto:ktsakmakidis@phys.uoa.gr
mailto:ktsakmakidis@phys.uoa.gr


4700912 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 25, NO. 3, MAY/JUNE 2019

Fig. 1. Geometry of the spheroidal scatterer. Left: prolate; right: oblate.

tailoring the shape of the nanoparticle. Non sphericity is com-
bined with anisotropy by introducing the concept of resonant
anisotropic nanoparticles where, instead of isotropic dielectrics,
uniaxial anisotropic materials are used to form the nanoan-
tenna. The use of dispersive uniaxial semiconductor crystals,
such as TiO2 and ZnGeP2 , ensures the unidirectional proper-
ties of the nanoantenna as isotropic ones do, since they ex-
hibit high ordinary/extraordinary refractive indices throughout
the visible range [23]. Moreover, the main advantage of using
uniaxial anisotropic materials, is that the high difference in or-
dinary/extraordinary indices, enables to push the overlapping
MD/ED point—first Kerker condition point—further inside the
visible, towards blue.

Existing methods that deal with light scattering by anisotropic
non spherical particles, include a Galerkin based integral equa-
tion technique for the case of an anisotropic ellipsoid [24],
and the T-matrix method for rotationally uniaxial particles [25]
and uniaxial ellipsoids [26]. However, as these remain numer-
ical methods, in this work we construct a fast and accurate
asymptotic solution to the scattering of a plane EM wave by
an anisotropic prolate or oblate spheroid, valid for small devi-
ations from sphericity. The geometry of the scatterer is shown
in Fig. 1. The prolate/oblate spheroid has a semi-major axis of
length c0 /b0 , a semi-minor axis of length b0 /c0 , an interfocal dis-
tance 2a, an eccentricity h = a/c0 , and a boundary surface S.
For the prolate spheroid 0 � h � 1, and for the oblate spheroid
0 � h < ∞ [27]. When h = 0, both prolate/oblate spheroids
degenerate to a sphere of radius R = c0 ≡ b0 , the case h = 1
turns the prolate spheroid to a needle having height 2a, and the
case h → ∞ turns the oblate spheroid to a disk of radius a. The
spheroid has uniaxial properties in permittivity, while its per-
meability is equal to that of free space. The uniaxial anisotropy
is described by Cartesian permittivity tensor

ε =

⎡
⎣

εo 0 0
0 εo 0
0 0 εe

⎤
⎦. (1)

In (1), εo = εor ε0 and εe = εer ε0 correspond to ordinary and
extraordinary tensorial elements, respectively, where εor and

εer are the relative permittivity elements. The respective refrac-
tive indices are no =

√
εor and ne =

√
εer . The surrounding

medium is considered to be free space with ε0 /μ0 as the free
space permittivity/permeability.

In order to solve the problem at hand, we initially expand the
incident and scattered fields in the surrounding region, as well as
the transmitted field in the anisotropic region, in terms of spher-
ical vector wave functions (SVWFs). For the field expansion in
the region of anisotropy, we make use of the method originally
developed for gyromagnetic spheres in [28]—hereinafter
referred to as DEM. DEM is based on the expansion of the un-
known fields in the anisotropic region in terms of SVWFs with
discrete wavenumbers, the latter obtained from the solution of
an eigenvalue problem. As long as h is kept small, the spheroid
is treated as a perturbation of the respective sphere with R = c0 .
Thus, we apply Maclaurin series expansion versus h for the in-
cident, scattered and transmitted fields, and in sequence for the
boundary conditions (BCs), at the perturbed spherical boundary.
This results—after great analytical effort—in simple algebraic
expressions for the bistatic and total scattering cross sections,
valid for small values of h. The main advantage of this method is
that it provides fast and accurate results in the appropriate range
of small values of h, while numerical techniques require many
repetitions and high CPU time for convergence. The validity
of our method is verified by comparisons with a particular
version of DDA, i.e., ADDA code [29], which supports uniaxial
anisotropy.

It should be noted that this perturbation procedure was applied
in [19], [20] to construct a closed-form solution for metallic and
isotropic spheroids. This work has the following novelty points
as compared to [19], [20]: first, the present method requires the
numerical solution of an eigenvalue problem involving the ele-
ments of the anisotropic permittivity tensor. This means that the
closed-form expressions of [20] cannot be used in the present
case, and a different approach is followed to solve the perturbed
problem. This approach is based on the successive solution of
linear systems of different orders (see Section II). Second, it
extends the study of EM scattering by metallic/isotropic to
anisotropic spheroids. This extension is not trivial, since the
use of the formal series solution based on spheroidal wave-
functions [20, Section III] cannot be applied in anisotropic
domains.

Once the method is developed, it is applied in investigating
how the engineering of subwavelength nanoantennas can be
achieved, due to the change of various parameters, like (i) the
anisotropy type (positive/negative uniaxial), (ii) anisotropy ratio
(AR ≡ |(εo − εe)/(εo + εe)|), (iii) the deviation from spheric-
ity through eccentricity h, (iv) the angle of incidence, and (v)
the type of incidence (transverse electric (TE) and transverse
magnetic (TM)).

This paper is organized as follows: Section II presents the
solution to the scattering problem. Section III examines the
validity and efficiency of the proposed method, Section IV in-
vestigates anisotropic nanospheroids at subwavelength scale,
Section V concludes, and Appendix includes various analytical
expressions needed for the application of the method.
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II. EM SCATTERING BY ANISOTROPIC SPHEROIDS

A. Prolate Spheroid

We consider a prolate spheroid illuminated by a plane EM
wave. The incident electric field has the expansion [28]

Einc = −i

∞∑
m = −∞
n= |m |

Emn

[
qmnM(1)

mn (k0 , r) + pmnN(1)
mn (k0 , r)

]
,

(2)

with k0 the free space wavenumber, while the expansion coef-
ficients qmn , pmn are derived from expressions given in [28],
depending on the wave’s polarization and direction of prop-
agation. The stacked notation in the subscript of summation
sign denotes double summation from m = −∞/n = |m| to
m = ∞/n = ∞. The e−iω t time dependence is assumed and
suppressed throughout.

The transmitted electric field inside the spheroid has the form
[30]

Et = −i
∞∑

m = −∞
n= |m |

Emn

∞∑
l=1

al

[
cmnlM(1)

mn (kl , r)

+ dmnlN(1)
mn (kl , r) +

wmnl

λl
L(1)

mn (kl , r)
]

− i

∞∑
l=1

alw00l

λl
L(1)

00 (kl , r), (3)

while the scattered field is expressed as

Es = −i

∞∑
m = −∞
n= |m |

Emn

[
amnM(3)

mn (k0 , r) + bmnN(3)
mn (k0 , r)

]
.

(4)

In above field expansions, Emn = in [(2n + 1)(n − m)!/n/

(n + 1)/(n + m)!]1/2 , and M(j )
mn , N(j )

mn , L(j )
mn , j = 1, 3, are the

SVWFs, given by [31]

M(j )
mn (k, r) =

√
n(n + 1)z(j )

n (kr)Cmn (θ, ϕ),

N(j )
mn (k, r) = n(n + 1)

z
(j )
n (kr)

kr
Pmn (θ, ϕ)

+
√

n(n + 1)
1
kr

d[rz(j )
n (kr)]
dr

Bmn (θ, ϕ),

L(j )
mn (k, r) =

1
k

dz
(j )
n (kr)
dr

Pmn (θ, ϕ)

+
√

n(n + 1)
z

(j )
n (kr)

kr
Bmn (θ, ϕ), (5)

where z
(1)
n = jn is the spherical Bessel function, z

(3)
n = hn

is the spherical Hankel function of the first kind with super-
script (1) omitted for simplicity, and Pmn , Bmn , Cmn are
the spherical surface harmonic vectors (SSHVs) [32]. We point
out that in the sums over m and n in expansions (2)–(4), the
pair (m,n) = (0, 0) is excluded. The expressions of coefficients

wmnl , w00l can be found in [30]. Furthermore, the quantities
cmnl , dmnl , λl are obtained by solving an eigenvalue problem as
described in detail in [30]. The coefficient matrix of the eigen-
value problem depends on the tensorial permittivity elements.
Finally, the discrete wavenumber kl is given by kl = τlk0 , with
τl =

√
εer /λl . The respective magnetic fields Hinc , Ht , Hs ,

can be found by Faraday’s law H = −i/(ωμ0)∇× E.
The solution of the scattering problem requires the satisfac-

tion of the BCs for the electric and the magnetic field at the
spheroid’s surface S, i.e.,

n × (Einc + Es − Et)
∣∣
S

= 0, n × (Hinc +Hs − Ht)
∣∣
S

= 0,

(6)

with n the outwards unit normal vector on S. To this end, we
consider small values of the eccentricity h, and treat the spheroid
as a perturbed sphere of radius R = c0 . As a first step, the surface
of the spheroid is expressed in terms of spherical coordinates as
r = c0/

√
1 − h2sin2θ/(h2 − 1), θ ∈ [0, π], and then we take

its Maclaurin series expansion in terms of h, yielding

r = c0

[
1 − sin2θ

2
h2 −

(
sin2θ

2
− 3sin4θ

8

)
h4 + O(h6)

]
.

(7)

When (7) is substituted into the radial quantities in SVWFs (5),
it gives the asymptotic expansions of the latter at the surface of
the spheroid [33, eqs (12) and (13)]. Next, we employ Maclaurin
series expansion for n, i.e.,

n =
[
1 − h4sin2(2θ)

8

] [
er +

sin(2θ)
2

× (
h2 + h4cos2θ

)
eθ + O(h6)

]
. (8)

As a further step, for small values of h, the unknown expansion
coefficients al , amn , bmn can be expanded as

al = a
(0)
l + a

(2)
l h2 + a

(4)
l h4 + O(h6),

amn = a(0)
mn + a(2)

mnh2 + a(4)
mnh4 + O(h6),

bmn = b(0)
mn + b(2)

mnh2 + b(4)
mnh4 + O(h6), (9)

where a
(0)
l , a

(0)
mn , b

(0)
mn correspond to the solution of scattering

by the unperturbed anisotropic sphere [30]. In order to satisfy
the BCs at the spheroid’s surface, we substitute into (6) the
electric and magnetic field expansions, along with asymptotic
expansions (7)–(9). Doing so, and sorting out terms by powers
of h, the two BCs transform into two vector equations having
the general form

X(0)
mn + X(2)

mnh2 + X(4)
mnh4 + O(h6) = 0,

Y(0)
mn + Y(2)

mnh2 + Y(4)
mnh4 + O(h6) = 0, (10)

where X(j )
mn , Y(j )

mn , j = 0, 2, 4, are lengthy vector quantities
involving the field expansion coefficients pmn , qmn , a

(j )
l , a

(j )
mn ,

b
(j )
mn , j = 0, 2, 4, and the SSHVs. Keeping terms up to O(h4),

setting each X(j )
mn , Y(j )

mn in (10) equal to zero, and grouping the
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resulting equations in pairs of zeroth, second and fourth order,
respectively, we get

X(0)
mn = 0, Y(0)

mn = 0,

X(2)
mn = 0, Y(2)

mn = 0,

X(4)
mn = 0, Y(4)

mn = 0. (11)

For each of the above six equations we take two dot-products
as follows: first, we multiply each equation by B∗

uv sin θdθdϕ
(the asterisk denoting complex conjugation) and integrate from
θ = 0 to π and from ϕ = 0 to 2π. Second, we multiply by
C∗

uv sin θdθdϕ and again perform the integration with the same
limits. Making use of the orthogonality relations of SSHVs, each
vector equation yields two scalar linear equations, and the three
pairs (11) are finally transformed into three respective linear
systems, each one involving four infinite sets of equations, i.e.,

∞∑
l=1

cmnljn (xl)a
(j )
l − hn (x0)a(j )

mn = Y
(j )
1,mn ,

∞∑
l=1

a
(j )
l

xl

[
dmnlj

d
n (xl) +

wmnl

λl
jn (xl)

]
− hd

n (x0)
x0

b(j )
mn

= Y
(j )
2,mn ,

∞∑
l=1

τldmnljn (xl)a
(j )
l − hn (x0)b(j )

mn = Y
(j )
3,mn ,

∞∑
l=1

τlcmnl
jd
n (xl)
xl

a
(j )
l − hd

n (x0)
x0

a(j )
mn = Y

(j )
4,mn . (12)

In (12), x0 = k0c0 is the normalized wavenumber, xl = τlx0 ,
zd

n (x) ≡ zn (x) + xz′n (x), zn = jn , hn , and the prime denotes
differentiation with respect to the argument. Eqs (12) are ob-
tained after lengthy algebra and comprise, upon truncation, the
linear system of j-th order, having the form Av(j ) = Y(j ) . The
expressions of the right hand sides (RHSs) of (12) are given in
the Appendix, where it can be seen that Y(0) depends on qmn

and pmn , Y(2) depends on qmn , pmn , a
(0)
l , a

(0)
mn , b

(0)
mn , while

Y(4) depends on qmn , pmn , a
(j )
l , a

(j )
mn , b

(j )
mn , j = 0, 2. There-

fore, the systems are solved successively, i.e., the zeroth order
system is solved first, a

(0)
l , a

(0)
mn , b

(0)
mn are found and then used

to generate the RHS of the second order system. Solution of
the latter yields a

(2)
l , a

(2)
mn , b

(2)
mn , which in turn are used—along

with a
(0)
l , a

(0)
mn , b

(0)
mn —to generate the RHS of the fourth order

system. Solution of the latter yields a
(4)
l , a

(4)
mn , b

(4)
mn . We point

out that system matrix A is the same for every system order, and
needs to be assembled only once in the computer program.

Once a
(j )
l , a

(j )
mn , b

(j )
mn are known, the field expansion co-

efficients are obtained by (9). Then, using the scattered far
field Es = ejk0 r /(k0r)

[
fθ (θ, ϕ)eθ + fϕ (θ, ϕ)eϕ

]
, where fθ,ϕ

are the components of the scattering amplitude that depend
on a

(0),(2),(4)
mn , b

(0),(2),(4)
mn , the bistatic radar cross section (RCS)

σ(θ, ϕ) can be expressed in the form

σ(θ, ϕ)

= σ(0)(θ, ϕ)
[
1 + g(2)(θ, ϕ)h2 + g(4)(θ, ϕ)h4 + O(h6)

]
.

(13)

In (13) σ(0)(θ, ϕ) corresponds to the RCS of the unperturbed
sphere, while the correction terms g(2),(4)(θ, ϕ) depend on
a

(0),(2),(4)
mn , b

(0),(2),(4)
mn and are independent of h. The expres-

sions σ(0)(θ, ϕ), g(2),(4)(θ, ϕ) can be readily computed, and
once available, can be used for fast RCS computations via (13)
for many different values of h. Similarly, the total scattering
cross section Qt is expressed as

Qt = Q
(0)
t + Q

(2)
t h2 + Q

(4)
t h4 + O(h6), (14)

where

Q
(0)
t =

λ2
0

π

∞∑
m = −∞
n= |m |

(| a(0)
mn |2 + | b(0)

mn |2),

Q
(2)
t =

λ2
0

π
2

∞∑
m = −∞
n= |m |

Re(a(0)∗
mn a(2)

mn + b(0)∗
mn b(2)

mn ),

Q
(4)
t =

λ2
0

π

∞∑
m = −∞
n= |m |

[
| a(2)

mn |2 + | b(2)
mn |2

+ 2Re(a(0)∗
mn a(4)

mn + b(0)∗
mn b(4)

mn )
]
. (15)

In (15), λ0 = 2π/k0 is the free space wavelength. It should
be noted that the perturbation analysis applied in (2)–(4), the
composition of the RHS in (12), and the derivation of (13), (14),
is exact up to the order of h4 (see also Appendix). This means
that the present method, through (14), serves as an accurate and
fast tool for revealing the resonant scattering characteristics of
anisotropic spheroids.

B. Oblate Spheroid

For the oblate spheroid, a
(j )
l , a

(j )
mn , b

(j )
mn are again obtained

by the linear systems (12), but −h2 is used in place of h2 for
the calculation of al , amn , bmn in (9), as well as in the RCS
computations (13), (14).

III. VALIDATION AND PERFORMANCE

We hereby demonstrate the validity, accuracy and efficiency
of the proposed perturbation-based DEM method, by computing
the normalized bistatic RCS σ/λ2

0 in dB, for various spheroidal
anisotropic configurations. We begin with the verification of
DEM for prolate uniaxial spheroids, and then proceed to the
oblate case. To validate DEM, we employ ADDA code [29],
a particular version of DDA, which is capable of comput-
ing the RCS of uniaxial scatterers. The incident plane wave
Einc = exeik0 z is considered in our computations. In what
follows, the permittivity tensor (1) will be displayed as a set
ε/ε0 = {εor , εor , εer}.
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Fig. 2. Bistatic RCS for uniaxial prolate spheroids with x0 = 1.5π , ε/ε0 =
{3, 3, 1} and ϕ = 0◦. Curves: DEM; dots: ADDA. Blue curve/dots: h = 0.1;
red curve/dots: h = 0.3.

We begin the validation directly with anisotropic spheroids.
The isotropic case—obtained by (1) by letting εo ≡ εe—is not
considered at all herein. The reason is that DEM yields precisely
the same numerical values of g(2) , g(4) appearing in (13), with
the ones appearing in [20, Tables III, IV]. Therefore, all con-
clusions drawn in [20] regarding the validity of the perturbation
method for isotropic spheroidal scatterers, apply here as well.
Here we focus on the anisotropic response which constitutes the
main novel point of this work.

In Fig. 2 we plot the RCS for uniaxial prolate spheroids and
two different values of eccentricity h. The values of parameters
are gathered in Figure’s caption. DEM and ADDA overlap ex-
cellently, even at the large draught appearing at θ = 90◦, thus
verifying the accuracy of the results. The small deviation in RCS
versus h, i.e, from h = 0.1 to h = 0.3, is well captured by both
methods, as it is depicted around θ = 45◦ or around θ = 70◦. In
order to distinguish the small deviations around θ = 45◦ and θ =
70◦ with ADDA, we need to initialize it with many dipoles per
wavelength (DPL). In the present and all subsequent examples,
ADDA is initialized as follows: first, we use 128 DPL to ensure
convergence. To model the spheroid, we use the default ellipsoid
shape by defining the ratios y/x = 1, z/x = 1/

√
1 − h2 for the

prolate spheroid, and y/x = 1, z/x = 1/
√

1 + h2 for the oblate
spheroid. The equivalent radius needed in ADDA is set equal to
c0(1 − h2)1/3 for the prolate and equal to c0(1 + h2)1/3 for the
oblate spheroid, with c0 defined in microns. In our computations
we set c0 = 1 μm, while the incident wavelength is set equal
to 2πc0/x0 . Finally, the uniaxial tensor is defined through the
anisotropic refractive index by defining the three elements as
{√εor ,

√
εor ,

√
εer}. All calculations were performed on a Dell

Precision 2.26 GHz double quad-core Xeon equipped machine.
The computational performance of ADDA is 900 s/1113 s for
h = 0.1/h = 0.3. CPU time for DEM is only 3.2 s for h = 0.1.
When h = 0.3, we do not need to repeat the execution of the
whole program for DEM, but since g(2) , g(4) in (13) are known
from the first run (the one for h = 0.1), the RCS for h = 0.3 is

Fig. 3. Bistatic RCS for uniaxial oblate spheroids with x0 = 1.3π , ε/ε0 =
{4, 4, 2.5} and ϕ = 0◦. Curves: DEM; dots: ADDA. Blue curve/dots: h = 0.1;
red curve/dots: h = 0.2; green curve/dots: h = 0.3.

obtained immediately by the closed-form formula (13) in zero
time. Thus, the total CPU time for the two plots in Fig. 2 using
ADDA is 2013 s, while the total CPU time for DEM is 3.2 s.
Obviously, the superiority of DEM is revealed when one needs
to compute RCS for many different values of h. Nonetheless,
even a single run using DEM is much faster than a single run
using ADDA.

The prolate case of Fig. 2 does not present strong variations
in RCS due to changing h. A more illustrative example is pro-
vided by the uniaxial oblate spheroid considered in Fig. 3. Here,
even small changes in h (from h = 0.1 to h = 0.3) result in no-
table variations in RCS, and one can see how eccentricity affects
RCS. DEM/ADDA are in excellent agreement for all h used.
RCS plots show that the first draught at θ = 30◦ starts to disap-
pear when h increases, and a second one just before θ = 120◦

starts to emerge. Obviously, both DEM/ADDA capture this be-
havior, which further verifies the accuracy of DEM. CPU time
for ADDA is 1164/1524/1624 s for h = 0.1/h = 0.2/h = 0.3—
i.e., time increases when h increases. CPU time for DEM is only
2.5 s for h = 0.1. Total CPU time for all three plots in Fig. 3
using ADDA is 4312 s, while total CPU time for DEM is again
2.5 s, as explained above.

To conclude about the applicability domain of DEM, we
further investigate its validation/performance by plotting in
Fig. 4 the normalized back RCS σb/λ2

0 ≡ σ(π, 0)/λ2
0 versus

x0 , for an uniaxial oblate spheroid and various values of h.
In the plots of Fig. 4, the total number of points for x0 using
DEM is 121 (i.e., x0 ∈ [1, 7] with a step of 0.05), while for
ADDA we have used a step of 0.1, i.e., 61 points, due to
extremely large CPU time required by it. As it can be seen, the
precise locations of the draughts and peaks are not fixed, but
are sensitive to the small changes of h. For small values of h,
i.e., for h = 0.15, 0.25, 0.35, DEM and ADDA are in excellent
agreement. When h increases further, DEM starts to deviate,
but this deviation is pronounced when x0 is large and located
around a draught. For instance, when h = 0.5, the agreement is
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Fig. 4. Back RCS versus x0 for uniaxial oblate spheroids with ε/ε0 =
{2.2, 2.2, 3.5}. Curves: DEM; dots: ADDA. Blue curve/dots: h = 0.15; red
curve/dots: h = 0.25; green curve/dots: h = 0.35; black curve/dots: h = 0.5;
cyan curve/dots: h = 0.7.

good for a large range of x0 , but it deteriorates around x0 = 3
and for x0 > 5.5 where multiple draughts are present. However,
it is important to stress that for small values of x0 , the agreement
between DEM and ADDA is very good, even the first draught
below x0 = 2 is captured well. In the context of nanoantenna
design—see Section IV—this observation allows us to apply
DEM even for h up to 0.5, since the nanoantenna operates
in subwavelength regime. When h = 0.7, the disagreement
between DEM and ADDA is evident, especially for x0 > 4,
since the asymptotic terms used in (13) are not sufficient to
accurately resolve the solution for higher values of h. CPU time
for DEM to produce a single curve is 145 s, and it is the same
for all values of h used in Fig. 4. The indicative CPU time for
ADDA for the cases h = 0.15, 0.25, 0.35 is 19079 s ≈ 5.3 h
using 64 DPL. When h = 0.5 or 0.7, we had to increase DPL to
128 to assure convergence, then the CPU time was increased to
242867 s ≈ 67.5 h when h = 0.5, and to 375357 s ≈ 104.3 h
when h = 0.7. Similar observations on accuracy/performance
also hold for Qt through (14), and are not given here for brevity.
Since the perturbation parameter in (13), (14) is h, DEM is
also valid for higher values of x0 , as long as h is kept small. To
show this, we compute σb/λ2

0 (dB) = 19.58, 19.53, 20.92, and
Qt/λ2

0 = 7.23, 7.85, 18.91 for x0 = 7.5, 8, 10, respectively, by
DEM, while the respective results by ADDA are σb/λ2

0 (dB) =
19.54, 19.54, 20.9 and Qt/λ2

0 = 7.28, 7.9, 18.96. Summariz-
ing, as long as h is kept small up to 0.35, or up to 0.5 in
combination with small x0 , the perturbation method has ex-
cellent performance for revealing the scattering characteristics
of anisotropic spheroids, especially for multiple calculations
over h.

IV. ENGINEERING ANISOTROPIC NANOANTENNAS

In this Section we introduce anisotropy and non sphericity to
tailor the location of Kerker points, and thus optimize the oper-
ation of nanoantennas at desired wavelengths. Realistic disper-
sive uniaxial anisotropic materials, like TiO2 and ZnGeP2 , may

be used to form nanoantennas. These semiconductor crystals ex-
hibit high ordinary/extraordinary refractive indices, throughout
the visible range. For instance, TiO2 is positive uniaxial (PU)
(εer > εor ) and presents an indicative average ordinary relative
permittivity εor = 7.0668 and an average extraordinary relative
permittivity εer = 8.8027 at 430 nm–700 nm [23, p. 33.66].
In this wavelength regime, TiO2 has an average AR = 0.109.
ZnGeP2 is PU and exhibits even higher indices that enhance the
unidirectional properties, with indicative average values εor =
15.994, εer = 17.847, and AR = 0.0548 at 400 nm–700 nm
[23, p. 33.66]. In what follows, we do not use these average
values in the calculations, but we employ the dispersive rela-
tions εor = εor (λ0) and εer = εer (λ0) given in [23], with the
argument λ0 omitted throughout for simplicity.

In subwavelength regime, EM scattering is characterized by
various magnetic/electric resonances. For an isotropic spher-
ical nanoparticle, the MD/ED resonance corresponds to the
response of the expansion coefficient a

(0)
11 /b(0)

11 in the calcula-
tion of Qt [34]. Similarly, the magnetic/electric quadrupolar
(MQ)/(EQ) resonance corresponds to the response of a

(0)
12 /b(0)

12 ,
and so on. Obviously, for isotropic-dielectric spherical parti-
cles, the stimulating plane wave can impinge along z-direction
without violating any generality, and therefore m = 1 always
[31], for all orders of resonances (n = 1, 2, . . .). This is not
the case for spherical uniaxial nanoparticles, or spheroidal
isotropic/anisotropic ones, since anisotropy—through its op-
tical axis—and non sphericity—through eccentricity—cancel
any symmetry along θ-direction. This means that the mag-
netic/electric resonances, are due to the response of a

(0)
mn /b(0)

mn ,
where now m = −∞,∞. For instance, the MQ resonance in
an uniaxial sphere is due to n = 2, m = 0,±1,±2. This fact
differentiates and generalizes our study from the existing ones
mentioned in Introduction, which concern dielectric spheres.
On top of that, when nanosphere becomes nanospheroid, the
magnetic and electric resonances will be described by the cor-
rection terms a

(2),(4)
mn and b

(2),(4)
mn , respectively, in the calculation

of Qt—see (14), (15).
In what follows, the EM scattering problem is stimulated by

an incident plane wave of the form Einc = exeik0 z (therefore
the plane wave is impinging at 0◦ with respect to positive z
semi-axis), where Einc is normal to the yz-plane of incidence
(TE incidence). In Fig. 5, the solid curves (with respect to left
axis) depict spectra for subwavelength 100 nm radius ZnGeP2
nanosphere, by calculating the normalized Qt/λ2

0 over the visi-
ble and near-infrared (IR). The blue/solid curve corresponds to
full-wave calculation of Qt/λ2

0 , i.e., all m,n terms in (15) are
used, while the remaining solid curves (red, green, black) cor-
respond to Qt/λ2

0 due to separate MD, ED and MQ terms only
(i.e., using only the a

(0)
m,1 , b

(0)
m,1 and a

(0)
m,2 terms, respectively,

in (15)). The dashed curves (with respect to right axis) depict
σb/λ2

0 in dB. The blue/dashed curve corresponds to a full-wave
calculation, while the red/dashed curve corresponds to a calcu-
lation due to both MD/ED terms (i.e., both a

(0)
m,1 , b(0)

m,1 contribute
in (13)). Obviously, the various resonances are well pronounced
for ZnGeP2 in the full-wave solution of Qt/λ2

0 , due to its high
εor /εer . The first Kerker condition point [35] appears at the
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Fig. 5. Resonances of an 100 nm radius ZnGeP2 sphere. Left axis/solid curves:
Qt/λ2

0 vs λ0 ; blue: full-wave solution; red: MD term; green: ED term; black:
MQ term. Right axis/dashed curves: σb /λ2

0 vs λ0 ; blue: full-wave solution; red:
both MD/ED terms.

first intersection between MD and ED curves, for Qt/λ2
0 , as we

move from IR towards blue, i.e., at 775 nm. As can be seen from
right axis plots in Fig. 5, both the full-wave and MD/ED terms
solutions for σb/λ2

0 indicate a minimum, which coincides with
775 nm where the aforementioned MD/ED intersection takes
place. Since σb/λ2

0 is minimum, forward unidirectional scat-
tering occurs. This particular λ0 is referred as the first Kerker
wavelength. The second σb/λ2

0 minimum from MD/ED terms,
observed at 535 nm (red/dashed curve), does not correspond to
a forward unidirectional state, since coherent contribution takes
place from other higher order resonances. Indeed, the full-wave
solution for σb/λ2

0 does not depict a draught there. The sec-
ond Kerker condition point appears at the second intersection
between MD and ED curves. For ZnGeP2 , this is observed at
670 nm (second Kerker wavelength). At this point, the normal-
ized forward RCS σf/λ2

0 ≡ σ(0, 0)/λ2
0 yields a minimum.

ZnGeP2 presents higher indices than TiO2 , but the latter ex-
hibits higher AR. In Fig. 6 we study the influence of AR on
subwavelength resonances. We consider two cases: the PU case
defined above, and the negative uniaxial (NU) case (εer < εor ).
To this end, we begin with the original ZnGeP2 being PU, whose
dispersive relations for (εor , εer ) are given in [23]. Then, to
increase the AR and keep the PU property, we introduce the
cases (εor − 2, εer ), (εor − 4, εer ). This means that the com-
bination (εor − 4, εer ) has increased AR as compared to the
original (εor , εer ), still both cases maintain the PU property.
Similarly, the effect of NU property is examined by introducing
the cases (εor + 2, εer ), (εor + 4, εer ). These selections ensure
that εer < εor always. Fig. 6 focuses on the influence of AR
on MD/ED resonances. It is clear that a PU crystal with in-
creased AR enables a blue shift of both MD/ED resonances,
while a high AR NU crystal causes shifts towards IR. On
the contrary, the MD/ED resonances of an equivalent dielec-
tric will be observed between PU and NU states (εer = εor ).
These characteristics reveal that the introduction of a high AR
PU natural crystal, supports the shift of Kerker points inside the

Fig. 6. MD/ED resonances of an 100 nm radius ZnGeP2 sphere due to differ-
ent ARs. Group I/solid curves: MD resonances; group II/dashed curves: ED res-
onances. For each group: red: original ZnGeP2 with (εor , εer ). Shifts towards
blue: PU case; green: (εor − 2, εer ); black: (εor − 4, εer ). Shifts towards IR:
NU case; green: (εor + 2, εer ); black: (εor + 4, εer ).

Fig. 7. Total |E| (V/m) on yz-plane for the c0 = 100 nm radius ZnGeP2
sphere, using DEM. The incident plane wave is impinging at 0◦ with respect to
positive z semi-axis. (a) Original ZnGeP2 with (εor , εer ), stimulated at λ0 =
775 nm (first Kerker wavelength); (b) PU case with (εor − 4, εer ), stimulated
at λ0 = 708 nm (first Kerker wavelength); (c) focused image of (a); (d) focused
image of (b).

visible through material tuning, offering more design flexibility
in nanoscale, a case which is not achievable with conventional
isotropic dielectrics. Indeed, the first/second Kerker point for the
original ZnGeP2 , is observed at 775 nm/670 nm (intersections
of red solid/dashed curves). The first/second Kerker point using
the PU case with (εor − 4, εer ), is observed at 708 nm/620 nm
(intersections of black solid/dashed curves). To verify the for-
ward unidirectional behavior of the anisotropic nanoantennas
examined in Fig. 6, in Figs 7(a), (b) we plot the total |E| =√|Er |2 + |Eθ |2 + |Eϕ |2 on yz-plane, up to twenty radii away,
for the original ZnGeP2 with (εor , εer ), and for the enhanced
AR PU case of (εor − 4, εer ), respectively. These plots were
obtained by DEM. The incident plane wave is stimulated at the
respective first Kerker wavelengths, as observed in Fig. 6 above.
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Fig. 8. First Kerker minima (using both MD/ED terms) of a prolate ZnGeP2
spheroid having semi-major axis c0 = 100 nm, due to different h. Blue: h = 0
(sphere); red: h = 0.2; green: h = 0.3; black: h = 0.4; cyan: h = 0.5.

Fig. 9. First Kerker minima (using both MD/ED terms) of an oblate ZnGeP2
spheroid having semi-major axis b0 = 100 nm, due to different h. Arrows
indicate the location of first Kerker minima. Blue: h = 0 (sphere); red: h = 0.2;
green: h = 0.3; black: h = 0.4; cyan: h = 0.5.

In Figs 7(c), (d) we present focused images of the same setups,
around the nanoantennas, where the coherent MD/ED response
is evident from the field patterns.

Next, we examine how the geometry of the nanoantenna af-
fects its characteristics. Kerker points can be further shifted
towards blue, by introducing spheroidal nanoparticles. In the
following, we illustrate the qualitative alteration of the first
Kerker minimum, as the nanoparticle deviates from spheric-
ity, by plotting σb/λ2

0 vs λ0 , for various values of h. This is
done in Figs 8 and 9 where we study prolate/oblate spheroids.
The curves have been obtained using both MD/ED terms. First
Kerker minima are indicated by the sharp draughts. To clearly
illustrate the effect of h on these resonances, we focus on the
range 600 nm–900 nm. In order to avoid altering the physics due
to different sizes, for a fair comparison between prolate/oblate
shape, the larger dimension of each particle must not change.
Therefore, for the prolate case we keep the semi-major axis

Fig. 10. First Kerker minima (using both MD/ED terms) of an oblate ZnGeP2
spheroid having semi-major axis b0 = 100 nm and h = 0.5, due to differ-
ent ARs. Arrows indicate the location of first Kerker minima. Red: orig-
inal ZnGeP2 with (εor , εer ) (same result with Fig. 9/cyan curve); green:
(εor − 2, εer ); black: (εor − 3, εer ); cyan: (εor − 4, εer ). Blue: original
ZnGeP2 with (εor , εer ) and h = 0 (sphere—same result with Fig. 9/blue
curve).

c0 = 100 nm (i.e., equal to the radius of the original sphere),
and its semi-minor axis changes as b0 = c0

√
1 − h2 . For the

oblate case, we keep the semi-major axis b0 = 100 nm, and the
semi-minor axis changes as c0 = b0/

√
1 + h2 .

From Fig. 8 it is evident that, as h increases, the prolate shape
cannot guarantee the elimination of the backscattered power,
i.e., no deep draughts exist. Contrariwise, the oblate spheroid,
as Fig. 9 reveals, allows for deep draughts (indicated by vertical
arrows) with significant reduction of backscattered power, more-
over, these draughts are blue shifted as h increases. For instance,
the oblate spheroid with h = 0.4 has a shifted (with respect to
the unperturbed sphere) draught at 758 nm, while the h = 0.5
case yields a draught at 745 nm. The other draughts, for instance
the one appearing at 715 nm when h = 0.5, do not correspond
to a Kerker minimum, since coherent contribution takes place
from other higher order resonances. Fig. 10 further shows Kerker
minima for an oblate spheroid with h = 0.5, but now AR is en-
hanced to show how it affects these minima. We introduce the
cases (εor − 2, εer ), (εor − 3, εer ), (εor − 4, εer ), as we did in
Fig. 6, and plot σb/λ2

0 . Obviously, the deep draughts are further
shifted towards blue, entering the red zone of 620 nm–750 nm,
as AR increases. Higher values of h than those examined in
this Section cannot be used in the present development, since
more asymptotic terms are needed in the final expansion of
(14). Yet, in combination with anisotropy, a high aspect ratio
oblate spheroid (nanodisk) may allow for stronger shifts inside
the visible. To use higher values of h and support anisotropic
materials, the development of another full-wave method is re-
quired, since the formulation offered in [18], [20], is valid only
for isotropic spheroids. Concluding, the overall optimization of
the nanoantenna design is based on modifying both geometry
and anisotropy, a combination that allows for stronger shifts of
first Kerker minima towards blue, thus tailoring the unidirec-
tional properties of the nanoantenna, rendering it wavelength
dependent.
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Fig. 11. Bistatic RCS σ/λ2
0 vs θ on {x = 0, y > 0} plane (ϕ = 90◦) and

on {x = 0, y < 0} plane (ϕ = 270◦), for the oblate ZnGeP2 spheroids ex-
amined in Fig. 9. The incident plane wave is impinging at 0◦ with respect to
positive z semi-axis, and is stimulated at Kerker wavelengths, as indicated in
Fig. 9. Blue: h = 0/λ0 = 775 nm (sphere); red: h = 0.2/λ0 = 771 nm; green:
h = 0.3/λ0 = 766 nm; black: h = 0.4/λ0 = 758 nm; cyan: h = 0.5/
λ0 = 745 nm.

Since the nanoantenna is non spherical and anisotropic, the
direction of plane wave incidence plays a role in Kerker re-
sponse. Keeping the TE plane wave incidence as above, but
changing its direction 90◦ with respect to positive z semi-axis,
the first Kerker minima due to a prolate spheroid are again blue
shifted, but still significant backscattered power exists as in the
aforementioned prolate case of Fig. 8, where the incidence was
defined at 0◦ with respect to positive z semi-axis. Yet, another
point to mention is that, the TM incidence (Einc belongs on the
yz-plane of incidence) yields slightly different results as com-
pared to the TE incidence examined above, but not significantly
different to fundamentally change the scattering response.

Fig. 11 verifies that, if the various oblate anisotropic nanoan-
tennas examined in Fig. 9 are stimulated at their respective
Kerker wavelengths, they present forward unidirectional prop-
erties with eliminated back scattering. In addition, the radiation
wavelength of an oblate nanoantenna can be tuned by geometry
and material shaping, as analyzed in Figs 9, 10.

V. CONCLUSION

We investigated the engineering of subwavelength nanoan-
tennas composed of uniaxial nanospheroids, by rigorously
developing a fast and accurate perturbation-based DEM, for the
EM scattering of a plane wave by a prolate or oblate uniaxial
spheroid. The development of anisotropic nanoantennas permits
the shift of Kerker points several tens of nm towards blue, as
compared to all-dielectric nanoantennas, and enables to tune the
wavelength of the forward directional radiation within the visi-
ble. This is achieved by tailoring the material and the geometry

of the nanoparticle that forms the nanoantenna. Material shap-
ing is introduced by dispersive uniaxial semiconductor crystals,
like TiO2 or ZnGeP2 , featuring high ordinary/extraordinary
refractive indices throughout the visible. Positive uniaxial
crystals with enhanced anisotropy ratio, give rise to strong
shifts towards blue, as compared to conventional dielectrics.
Additionally, non sphericity perturbs the precise locations of
Kerker points, and it is shown that oblate geometry shaping
allows for further shift of Kerker points towards blue, keeping
the forward unidirectional operation of the nanoantenna.

APPENDIX

The RHS terms in (12) are given by
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where B
(2)
1,n (x) = −xj′n (x)/2, Γ(2)
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n(n + 1)Imnn
+

∑
s=n,n±2

Ems

Emn

×
{
b(2)
msΔ

(2)
3,s(x0) −
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l=1

a
(2)
l

[
dmslΔ

(2)
1,s(xl) +

wmsl

λl
Γ(2)

1,s(xl)
]}

× N1,msn

n(n + 1)Imnn
−

∑
s=n±1

Ems

Emn

[
a(2)

msB
(2)
3,s (x0)

−
∞∑

l=1

a
(2)
l cmslB

(2)
1,s (xl)

]
N ∗

2,msn

n(n + 1)Imnn

+
∑

s=n,n±2,n±4

Ems

Emn

{
pmsΔ

(4)
1,s(x0) + b(0)

msΔ
(4)
3,s(x0)

−
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l=1

a
(0)
l

[
dmslΔ

(4)
1,s(xl) +

wmsl

λl
Γ(4)

1,s(xl)
]}

N ∗
3,msn

n(n + 1)Imnn

+
∑

s=n,n±2

Ems

Emn

{
s(s + 1)b(2)

ms

hs(x0)
x0

−
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l=1

a
(2)
l

×
[
s(s + 1)dmsl

js(xl)
xl

+
wmsl

λl
j′s(xl)

]}
I7,msn

n(n + 1)Imnn

+
∑

s=n,n±2,n±4

Ems

Emn

{
s(s + 1)pms

[
Γ(2)

1,s(x0) − js(x0)
x0

]
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ms

[
Γ(2)
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−
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a
(0)
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[
E

(2)
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× I8,msn/[n(n + 1)Imnn ], (A.4)

where E
(2)
1,n (x) = −xj′′n (x)/2, B

(4)
1,n (x) = 3xj′n (x)/8 +

x2j′′n (x)/8, Γ(4)
1,n (x) = −jn (x)/(8x) + j′n (x)/8 + xj′′n (x)/8,

Δ(4)
1,n (x) = xj′′n (x)/2 + x2j′′′n (x)/8 − jn (x)/(8x) + j′n (x)/8,

and for B
(4)
3,n , Γ(4)

3,n , Δ(4)
3,n , we replace jn , j′n , j′′n , j′′′n with

hn , h′
n , h′′

n , h′′′
n , respectively. Finally,

N1,msn = m2Imsn + I2,msn ,

N2,msn = −im [(s + n + 2)I5,msn − (s − m + 1)Im,s+1,n

−(n − m + 1)Im,s,n+1] ,

N3,msn = m2I3,msn + I4,msn ,

N4,msn = im [(s + n + 2)I6,msn − (s − m + 1)I3,m ,s+1,n

−(n − m + 1)I3,m ,s,n+1] . (A.5)

In all formulas herein, Imsn and Ik,msn , k = 2, ..., 8 are
integrals involving the associated Legendre functions and
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their derivatives. Their analytical expressions are given in
Appendix A of [33], where Imsn is denoted as I(s, n), and
Ik,msn as Ik (s, n). The expressions for Y

(2)
3,mn , Y

(2)
4,mn , Y

(4)
3,mn ,

Y
(4)
4,mn , are derived from those for Y

(2)
1,mn , Y

(2)
2,mn , Y

(4)
1,mn ,

Y
(4)
2,mn , respectively, by making the substitutions qmn ↔ pmn ,

amn ↔ bmn , cmnl → τldmnl , dmnl → τlcmnl , and setting
wmnl ≡ 0.
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[8] D. C. Tzarouchis, P. Ylä-Oijala, and A. Sihvola, “Resonant scattering
characteristics of homogeneous dielectric sphere,” IEEE Trans. Antennas
Propag., vol. 65, no. 6, pp. 3184–3191, Jun. 2017.

[9] W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broad-
band unidirectional scattering by magneto-electric core-shell nanoparti-
cles,” ACS Nano, vol. 6, pp. 5489–5497, 2012.

[10] Y. Li et al., “Broadband zero-backward and near-zero-forward scattering
by metallo-dielectric core-shell nanoparticles,” Sci. Rep., vol. 5, 2015, Art.
no. 12491.

[11] W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by
multilayered cavities of effective radial anisotropy,” Sci. Rep., vol. 6,
2016, Art. no. 34775.

[12] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar,
and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,”
Science, vol. 354, no. 6314, pp. aag2472-1–aag2472-8, 2016.

[13] I. Staude et al., “Tailoring directional scattering through magnetic and
electric resonances in subwavelength silicon nanodisks,” ACS Nano, vol. 7,
pp. 7824–7832, 2013.

[14] X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of
light emission with spherical Si-based antennas,” Nanoscale, vol. 8,
pp. 10 441–10 452, 2016.

[15] S. D. Campbell and R. W. Ziolkowski, “Near-field directive beams from
passive and active asymmetric optical nanoantennas,” IEEE J. Sel. Topic
Quantum Electron., vol. 21, no. 4, Jul./Aug. 2015, Art. no. 4800112.

[16] D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S.
Kivshar, “Metamaterial tuning by manipulation of near-field interaction,”
Phys. Rev. B, vol. 82, 2010, Art. no. 155128.

[17] A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar,
“Optically induced interaction of magnetic moments in hybrid metamate-
rials,” ACS Nano, vol. 6, pp. 837–842, 2012.

[18] B. S. Luk’yanchuk, N. V. Voshchinnikov, R. Paniagua-Domı́nguez, and
A. I. Kuznetsov, “Optimum forward light scattering by spherical and
spheroidal dielectric nanoparticles with high refractive index,” ACS Pho-
ton., vol. 2, pp. 993–999, 2015.

[19] G. P. Zouros, A. D. Kotsis, and J. A. Roumeliotis, “Electromagnetic scat-
tering from a metallic prolate or oblate spheroid using asymptotic expan-
sions on spheroidal eigenvectors,” IEEE Trans. Antennas Propag., vol. 62,
no. 2, pp. 839–851, Feb. 2014.

[20] G. P. Zouros, A. D. Kotsis, and J. A. Roumeliotis, “Efficient calculation
of the electromagnetic scattering by lossless or lossy, prolate or oblate
dielectric spheroids,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3,
pp. 864–876, Mar. 2015.

[21] S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,”
App. Opt., vol. 14, pp. 29–49, 1975.

[22] M. F. R. Cooray and I. R. Ciric, “Scattering of electromagnetic waves
by a coated dielectric spheroid,” J. Electromagn. Waves Appl., vol. 6,
pp. 1491–1507, 1992.

[23] W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and
glasses,” in Handbook of Optics, vol. 2, M. Bass, Ed. New York, NY, USA:
McGraw-Hill, 1995, ch. 33.

[24] S. N. Papadakis, N. K. Uzunoglu, and C. N. Capsalis, “Scattering of a
plane wave by a general anisotropic dielectric ellipsoid,” J. Opt. Soc. Am.
A, vol. 7, pp. 991–997, 1990.

[25] S. Liu, L. W. Li, M. S. Leong, and T. S. Yeo, “Scattering by an arbitrar-
ily shaped rotationally uniaxial anisotropic object: Electromagnetic fields
and dyadic Green’s fucntions,” J. Electromagn. Waves Appl., vol. 14,
pp. 87–106, 2000.

[26] A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Par-
ticles: Null-Field Method With Discrete Sources: Theory and Programs.
Berlin, Germany: Springer, 2006.

[27] C. Flammer, Spheroidal Wave Functions. Stanford, CA, USA: Stanford
Univ. Press, 1957.

[28] Z. F. Lin and C. T. Chui, “Electromagnetic scattering by optically
anisotropic magnetic particle,” Phys. Rev. E, vol. 69, 2004, Art. no. 056614.

[29] M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation
code ADDA: Capabilities and known limitations,” J. Quantitative Spec-
trosc. Radiative Transfer, vol. 112, pp. 2234–2247, 2011.

[30] J. L.-W. Li and W.-L. Ong, “A new solution for characterizing electromag-
netic scattering by a gyroelectric sphere,” IEEE Trans. Antennas Propag.,
vol. 59, no. 9, pp. 3370–3378, Sep. 2011.

[31] J. A. Stratton, Electromagnetic Theory. New York, NY, USA: McGraw-
Hill, 1941.

[32] P. M. Morse and H. Feshbach, Methods of Theoretical Physics. New York,
NY, USA: McGraw-Hill, 1953.

[33] A. D. Kotsis and J. A. Roumeliotis, “Electromagnetic scattering by a
metallic spheroid using shape perturbation method,” Prog. Electromagn.
Res., vol. 67, pp. 113–134, 2007.
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