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Spherical optomagnonic microresonators: Triple-resonant photon transitions
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We report a thorough theoretical investigation of magnon-assisted photon transitions in magnetic garnet
micron-sized spheres, which operate as optomagnonic resonators. In this case, matching the intraband splitting
of optical Mie modes, induced by particle magnetization, to the eigenfrequency of the uniform-precession
spin wave, high-efficiency triply resonant optical transitions between these modes, through respective emission
or absorption of a cavity magnon, are enabled. By means of rigorous full electrodynamic computations,
supported by corresponding approximate analytical calculations, we provide compelling evidence of greatly
increased optomagnonic interaction, compared to that in similar processes between whispering gallery modes of
corresponding submillimeter spheres, due to the reduced magnon mode volume. We explain the underlying
mechanisms to a degree that goes beyond existing interpretation, invoking group theory to derive general
selection rules and highlighting the role of the photon spin as the key property for maximizing the respective
coupling strength.
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I. INTRODUCTION

Tailoring and enhancing the interaction between
visible/near-infrared (Vis/NIR) light and spin waves in
dual, so-called optomagnonic or photomagnonic, cavities
have recently attracted a lot of attention for a variety of
reasons, not the least of which is the promising potential in
realizing magnon-based microwave-to-optical transducers
[1–3] appropriate for quantum-computing applications [4–7].
In this respect, several configurations have been proposed,
including planar waveguides [2], photomagnonic crystals
[8,9], and Fabry-Pérot cavities [10–16] of dielectric magnetic
materials, although the most common experimentally
investigated optomagnonic cavity is a millimeter-sized
yttrium iron garnet (YIG) spherical particle [17–21]. The
YIG sphere exhibits high-Q optical whispering gallery modes
(WGMs) in the Vis/NIR part of the spectrum while, at
the same time, it supports spin-wave excitations (magnons)
with frequencies of 1–10 GHz. Depending on the excitation
route, several magnonic modes can be triggered [22–24], the
most efficiently excited one being the fundamental uniform
precession, termed Kittel, mode [25,26].

When the frequency difference between two WGMs is
equal to the frequency of a cavity magnon, the so-called
triple-resonance condition is met, and efficient frequency
up-conversion (down-conversion) of a photon can take place
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through the respective absorption (emission) of a magnon,
provided the appropriate selection rules are satisfied. Such
processes that involve three particles, i.e., two different pho-
tons and one magnon, have been probed through Brillouin
light scattering experiments, measuring the corresponding
Stokes or anti-Stokes scattering intensities [17–19]. However,
the observed conversion efficiencies from one WGM to an-
other, mediated by a Kittel magnon, are rather small, which
limits the possibility for practical applications. The reason for
this inefficient coupling between optical WGMs and the Kittel
magnon is the low spatial overlap of the corresponding mode
profiles; the optical field in the WGM is spatially confined to a
very thin ringlike region at the boundaries of the sphere, while
the Kittel magnon exhibits a spatially uniform magnetization
field profile. As a result, the overlap between these modes
is small, resulting in a rather weak optomagnonic effect. A
possible route to enhance the optomagnonic interaction is
to consider higher-order, so-called Walker, magnon modes
[27–32] with a spatial distribution localized towards the res-
onator’s boundaries, increasing in this way the overlap with
the optical WGMs. Nevertheless, Walker magnons are still
difficult to control, and their excitation is not as robust and
efficient as that of the Kittel magnon.

An alternative route to enhance the optomagnonic inter-
action in magnetic spherical particles is to scale down the
size of the sphere, harnessing in this way the properties of
optical Mie resonances as demonstrated theoretically by Alm-
panis [33]. However, although the quasistatic approximation
undertaken in Ref. [33] is able to predict the time variation
of the scattered electromagnetic (EM) field in the presence of
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a magnonic excitation, it cannot account for energy transfer
from one optical mode to another, and thus, it is not suitable
to describe triple-resonant optical transitions where a nona-
diabatic, fully dynamic approach should be applied [14,15].
Nevertheless, in the weak-coupling regime, which is valid
in such optomagnonic resonators [17–19], magnon-mediated
photon-to-photon conversion probabilities can be evaluated to
first-order Born approximation, which is adequate enough for
this purpose and at the same time allows for a deeper insight
into the underlying physics.

In the present paper we report a thorough theoretical study
of triply resonant optomagnonic interactions in a magnetic
garnet microsphere. When unmagnetized, the sphere supports
degenerate optical Mie modes characterized by a given po-
larization P [transverse electric (TE) or transverse magnetic
(TM)] and a given angular momentum number � = 1, 2, . . ..
For a fixed sphere radius, the mode frequencies increase with
�, or, equivalently, by increasing the particle radius, modes
of higher � are brought into a given frequency range [34].
Specifically, at Vis/NIR frequencies, garnet microspheres ex-
hibit Mie resonances with typical values of � of the order of
10, while, for such millimeter-sized spheres, typical � values
for WGMs are several hundreds or thousands in that spectral
range. When the spherical particle is magnetized, the P�

character of Mie modes is no longer conserved.
The magnetized micron-sized sphere exhibits nondegen-

erate Mie-type optical modes of different magnetic num-
bers m = −�,−� + 1, . . . , � (Zeeman-like splitting) [33], as
schematically shown in Fig. 1(a). In the Vis/NIR part of the
EM spectrum, the frequency splitting between such neighbor-
ing modes matches the typical frequencies of magnons, i.e.,
a few gigahertz (GHz), so that magnon-mediated photon-to-
photon transitions fulfilling the triple-resonance condition, as
illustrated in Fig. 1(b), can be realized. It is worth pointing
out that, for larger (millimeter-sized) particles, the triple-
resonance condition is satisfied for optical transitions between
successive WGMs with different predominant polarization P
and angular momentum index � since their frequency differ-
ence is again a few GHz. Nevertheless, for sphere radii below
100 μm the frequency difference between successive WGMs
severely exceeds the magnon’s frequency [35]. A further
difference between our work and the descriptions reported
so far [17–21,30–32] is that, here, we treat perturbatively
only the action of the spin wave and not that of the static
magnetization field. The latter is fully taken into account
in evaluating exactly the Zeeman-split Mie modes using the
rigorous coupled-field volume integral equation–Dini series
expansion (CFVIE-DSE) method [36,37].

The remainder of the paper is organized as follows. In
Sec. II we mention our CFVIE-DSE method, which is sum-
marized in the Appendix, employed for the rigorous calcula-
tion of the EM field eigenmodes of a statically magnetized
sphere, and analyze the symmetry of these modes in terms of
group theory. In Sec. III we discuss the description of photon
transitions between Zeeman-split Mie modes, induced by a
uniform-precession spin wave, to first order in perturbation
theory and establish the selection rules that govern such tran-
sitions. Section IV is devoted to the discussion of our results.
We provide a consistent interpretation of the systematic vari-
ation of the calculated photon transition amplitudes between
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FIG. 1. (a) Schematic representation of Mie mode degeneracy
lifting (Zeeman splitting) in a dielectric magnetic microsphere.
In the unmagnetized sphere, these modes are characterized by a
given polarization P [transverse electric or transverse magnetic]
and a given angular momentum number � = 1, 2, . . ., while they
are (2� + 1)-fold degenerate with respect to the magnetic number
m = −�, −� + 1, . . . , �. For magnetic garnet spheres in the Vis/NIR
part of the EM spectrum, Zeeman splitting can attain large values,
of the order of 10 GHz. (b) Graphical illustration of the triple-
resonance condition in a one-magnon absorption (photon frequency
up-conversion) process: Photon transition from a mode at ωi to a
mode at ωf by absorption of one magnon of angular frequency � =
ωf − ωi. The corresponding one-magnon emission process yields
photon frequency down-conversion.

different modes and uncover the role of the photon spin as
the key property that determines these amplitudes in Kittel-
magnon-driven transitions. The last section summarizes our
main findings.

II. METHOD OF CALCULATION

Typically, magnetically saturated rare-earth iron garnets in
the Vis/NIR part of the EM spectrum exhibit a gyroelectric
optical response described by a relative permittivity tensor of
the form

ε =
⎛⎝ ε i f 0

−i f ε 0
0 0 ε

⎞⎠ (1)

if we assume the magnetization is along the z axis, where
f is the dimensionless Faraday coefficient [38] and ε is the
relative isotropic permittivity of the unmagnetized material.
The relative magnetic permeability is scalar and equals that of
free space, i.e., μ = 1.

In the present work we shall calculate the EM eigenmodes
in a sphere of radius R made of such a magnetic material using
the rigorous CFVIE-DSE method [36,37], which we briefly
outline in the Appendix. This method leads to a homogeneous
linear system, whose solutions are the complex eigenfrequen-
cies of the magnetized sphere, zν = ων − iγν , ν = 1, 2, . . .,
with ων being the resonance frequency and γν/π being the
corresponding resonance linewidth, since the modes are not
completely bound. Causality implies γν > 0 for exp(−iωt )
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TABLE I. Character table of the C∞h point group (m =
0, ±1, ±2, . . .). Cφ are rotation operations through an angle φ (−π <

φ � π ), and I is the inversion operation.

C∞h Cφ ICφ

Emg eimφ eimφ

Emu eimφ −eimφ

time dependence. The complex roots zν are retrieved by the
global algorithm Complex roots Computation (CCOMP) [39].

The field distributions for each eigenmode of the magne-
tized sphere are retrieved from the corresponding eigenvec-
tors, which provide the unknown field expansion coefficients
[40]. It should be noted that the eigenmodes can be computed
separately for every different value of m and parity σ = g
(gerade) or σ = u (ungerade) of the spherical vector wave
function defined in the Appendix, which remain constant
because of the symmetry of the system. Therefore, in each
mσ invariant subspace, we use the index ν = 1, 2, . . . to label
the successive solutions.

In terms of group theory, the (2� + 1) degeneracy of a Mie
mode is lifted when the spherical particle is magnetized, say,
along the z direction because the symmetry is reduced from
O(3) to C∞h [41], which can be understood as a Zeeman-
like splitting. Projecting onto the irreducible representations
of the C∞h point group, listed in Table I, one obtains m =
−�,−� + 1, . . . , � distinct nondegenerate modes, which have
Emg symmetry for a TM electric multipole (N type) of even
order or a TE magnetic multipole (M type) of odd order
and Emu symmetry for an electric multipole of odd order or
a magnetic multipole of even order. This means that each
Zeeman-split Mie mode is characterized by a well-defined
value of m while these modes have the same parity σ and
order ν, namely, those of the degenerate parent Mie modes.
Consequently, they have neither a specific polarization nor
a specific multipole order in the strict sense, although their
dominant character is that of the parent Mie modes. The
electric field intensity of these modes, similar to WGMs [42],
exhibits a number of peaks along the radial direction, the
meridian, and the circumference of the sphere, which equal
to ν, � − |m| + 1, and m, respectively.

III. MAGNON-INDUCED PHOTON TRANSITIONS

In the previous section, we considered a statically mag-
netized spherical particle, where the magnetically induced
gyroelectric permittivity tensor causes a Zeeman-like splitting
of the optical Mie modes. However, if the magnetization
dynamics comes into play, it implies a time-dependent per-
turbation in the dielectric permittivity tensor. In particular,
for the Kittel mode, where the magnetization precesses in
phase throughout the entire sphere with angular frequency
� [26] about the z axis, forming a right circular cone with
semiopening angle ϑ = arctan(η), we have [33]

M(t )/Ms = η cos(�t )̂x + η sin(�t )̂y + ẑ, (2)

where Ms is the saturation magnetization along the z axis, and
the time-dependent permittivity tensor will have the form

ε(t ) = ε + δε(t ). (3)

Its static part, ε, given by Eq. (1), can be written in the form

ε = εI − f Sz, (4)

while its dynamic part, δε(t ), reads [11]

δε(t ) =
⎛⎝ 0 0 −i f η sin(�t )

0 0 i f η cos(�t )
i f η sin(�t ) −i f η cos(�t ) 0

⎞⎠
≡ − f η

2

[
e−i�t S+ + ei�t S−

]
, (5)

with S± = Sx ± iSy, where we have made use of the spin-1
matrices [43] (in units of h̄)

Sx =
⎛⎝0 0 0

0 0 −i
0 i 0

⎞⎠, Sy =
⎛⎝ 0 0 i

0 0 0
−i 0 0

⎞⎠,

Sz =
⎛⎝0 −i 0

i 0 0
0 0 0

⎞⎠. (6)

In the weak-coupling regime, where the descriptions of
optomagnonic cavities reported so far [1,10,17–19,21,29–32]
are based, one can restrict the calculation to the first-order
Born approximation. In this approximation, the magnon-
mediated transitions are described by the overlap integral G =
〈f| δε |i〉, where 〈αrt |i〉 = Ei;α (r) exp(−iωit ) and 〈f|αrt〉 =
E∗

f;α (r) exp(iωft ), with α denoting (Cartesian) component,
correspond to appropriate initial (i) and final (f) EM modes of
the statically magnetized sphere. As discussed in the previous
section, quite generally, these modes are labeled by indices
miσiνi and mfσfνf , respectively. The overlap integral, in ex-
plicit form, reads

G =
∫

dt
∫

V
d3rE†

f (r) exp(iωft )δε(t )Ei(r) exp(−iωit ), (7)

where V is the volume of the sphere and the dagger denotes
conjugate transpose. Substituting δε(t ), from Eq. (5), into
Eq. (7), we obtain

G = π [δ(ωi − ωf + �)g+ + δ(ωi − ωf − �)g−], (8)

where g+ = 〈f|δε|i〉 and g− = 〈f|δε†|i〉, which can be written
in the form

g± = i f ηu± ·
∫

V
d3rE∗

f (r) × Ei(r), (9)

with u± = x̂ ± îy and the star denoting complex conjugation.
The δ functions in Eq. (8) express energy conservation in the
optical transitions that involve absorption and emission of one
magnon by a photon, as expected in the linear regime.

It is straightforward to show that PδεP−1 = exp(iφ)δε and

Pδε
†
P−1 = exp(−iφ)δε

† ∀ P ∈ C∞h, where P is the transfor-
mation matrix in the three-dimensional Euclidean space that
corresponds to operation P. This implies (see Table I) that

δε and δε
†

are irreducible tensor operators which have the
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symmetry of the irreducible representations E1g and E−1g of

C∞h. Therefore, δε |mσν〉 and δε
† |mσν〉 transform according

to the relevant direct product representations E1g ⊗ Emσ =
E(m+1)σ and E−1g ⊗ Emσ = E(m−1)σ , respectively, where σ =
g or σ = u. These considerations imply a simple selection rule
for the above photon transitions: mf = mi + 1 and mf = mi −
1 for one-magnon absorption (anti-Stokes) and one-magnon
emission (Stokes) processes, respectively, while both initial
and final states must have the same parity, σf = σi. We note
that considering the corresponding magnetic point group,
D∞h(C∞h), leads to the same selection rules. As long as, in
the present work, we are concerned with transitions between
Zeeman-split Mie modes, which have the same parity σ and
order ν (those of the parent Mie modes), we shall denote each
of the initial and final states by a single index, mi and mf ,
respectively. It should be noted that, here, we use the Dirac
bra-ket notation for convenience because it allows for a more
compact description of vector spaces and operations in these
spaces. A similar notation has been applied to other classical
fields as well, e.g., elastic waves in phononic crystals [44].

Since we are interested in transitions involving a single
photon in the initial and final states, each photonic eigenmode
should be appropriately normalized. For linear nondissipative
and nondispersive anisotropic media [45,46], the normaliza-
tion condition reads [32]

1

4

∫
V

d3r[Em(r) · D∗
m(r) + Hm(r) · B∗

m(r)] = h̄ωm

2
. (10)

Similarly, normalizing the spin-wave amplitude in Eq. (2) to
correspond to one magnon (one Bohr magneton) within the
volume of the sphere [32,47], we have

η =
√

3h̄|γe|
2πMsR3

, (11)

where γe is the gyromagnetic ratio and the quantity h̄|γe|
corresponds to one Bohr magneton.

IV. RESULTS AND DISCUSSION

We consider a rare-earth iron garnet spherical particle
of radius R = 0.6 μm, in air, which operates as an opto-
magnonic resonator. Such dielectric magnetic particles, of
micron or submicron size, can be fabricated by various tech-
niques [48–54]. In general, dielectric microparticles support
complex-frequency eigenmodes of the EM field, as discussed
in Sec. II, which can be excited by either free-wave cou-
pling (scattering configuration) [33], evanescent coupling
[17,18,35], or fluorescence coupling [55], although in the
present work we shall not be concerned with their possi-
ble excitation. For our numerical calculations we assume a
relative magnetic permeability equal to unity and for the
electric permittivity tensor of Eq. (1) ε = 6.5, and f = −0.02.
These values are taken from available experimental data on
bismuth-substituted yttrium iron garnet (Bi:YIG) close to
2.067 eV, i.e., a free-space wavelength of about 600 nm [56],
and we neglect dissipative losses in order to better illus-
trate the analysis at stake. When the sphere is unmagnetized
( f = 0), it supports long-lifetime, spectrally separated, mul-
tipole (2�-pole) Mie resonances of TM or TE type, which

FIG. 2. Zeeman-split Mie resonance frequencies for a magne-
tized Bi:YIG sphere (ε = 6.5, f = −0.02) of radius R = 0.6 μm
(open circles). The solid circles show the eigenfrequency ωr of the
corresponding degenerate Mie modes of the unmagnetized sphere,
TE�=12,ν=1, which serves as a reference for the visualization of level
splitting on the GHz scale.

confine the field inside the particle. Here, we choose such
a particular resonance, namely, the TE�=12,ν=1, located at a
frequency ωr/2π = 499.546 THz, i.e., a free-space wave-
length equal to 600.13 nm. This resonance corresponds to
(2� + 1) = 25 degenerate modes at the same frequency, as
shown with dots in Fig. 2. When the spherical particle is mag-
netically saturated, the corresponding Zeeman-split modes are
distinguished at different frequencies, as shown by open cir-
cles in Fig. 2, with their calculated linewidth γ /π being about
0.8 GHz, which indicates the existence of high-Q spectrally
separated resonances. Their separation �ω/2π varies from
0.5 to about 10 GHz, which lies within the frequency range
of Kittel resonances excited in submillimeter spherical YIG
particles [18,19,23,57–60]. Of course, materials with higher
(lower) Faraday coefficient, magnetized at saturation, would
exhibit higher (lower) spectral separation (Zeeman splitting)
between the modes.

We now calculate the transition amplitude upon one-
magnon absorption g+, given by Eq. (9), between all suc-
cessive initial, |mi〉, and final, |mf〉, Zeeman-split Mie modes
complying with the selection rule mf = mi + 1, assuming
that the magnon frequency fulfills the triple-resonance con-
dition ωf = ωi + �. The spin-wave amplitude is η 
 2 ×
10−5, as obtained from Eq. (11) substituting the gyromag-
netic ratio |γe|/2π = 28 GHz/T and the saturation mag-
netization Ms = 120 kA/m for Bi:YIG [61–63]. The re-
sults for the optomagnonic coupling strength g̃+ ≡ ε0|g+|/h̄
scaled with f , depicted in Fig. 3(a), exhibit a parabolic-
like behavior with a maximum at a particular value of mi.
By decreasing the magnitude of the Faraday coefficient,
the position of the maximum moves towards mi = 0, as
shown in Fig. 3(b). Upon magnetization reversal, the Fara-
day coefficient changes sign, as the magnetic indices m
do, since we keep the z axis fixed. Noting that the time-
reversed process is a photon transition from state |−mi − 1〉
to |−mi〉 through emission of one magnon, reversibility
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FIG. 3. (a) Calculated magnitude of the reduced optomagnonic
coupling strength, g̃+/| f | = |g+|ε0/(h̄| f |), for triple-resonant pho-
ton transitions from the |mi〉 to the |mi + 1〉 Zeeman-split Mie-
TE�=12,ν=1 modes of a magnetized Bi:YIG sphere (ε = 6.5, f =
−0.02) of radius R = 0.6 μm (see Fig. 2), induced by absorption
of a Kittel magnon. (b) Respective reduced optomagnonic coupling
strengths in the limit f → 0 obtained analytically (dots) and calcu-
lated numerically for f = −0.002 (open circles). (c) and (d) Corre-
sponding expectation value of the z component of the photon spin in
each mode.

implies |g+(mi, f )| = |g−(−mi − 1,− f )| = |g+(−mi,− f )|
that expresses the symmetry of the optomagnonic coupling
strength with respect to magnetization reversal.

To gain physical insight into the systematic variation of the
reduced optomagnonic coupling strength, one can consider
the low magneto-optical coupling limit, f → 0, where an
approximate analytical solution can be obtained. In this limit,
to first-order approximation, instead of the Zeeman-split Mie
modes of the magnetic sphere, one can employ the corre-
sponding unsplit (degenerate) modes of the unmagnetized
sphere. We recall that the EM field associated with the parent
TE�=12,ν=1 Mie modes is given by

EM
�m(r) = aM

�mM�m(kr, r),

HM
�m(r) = −i

kr

√
ε0ε

μ0
∇ × EM

�m(r)

= −iaM
�m

√
ε0ε

μ0
N�m(kr, r), (12)

where kr = ωr
√

ε0εμ0 is the corresponding wave number
and the spherical vector wave functions are defined in the
Appendix. The magnitude of the field amplitude |aM

�m| entering
in Eqs. (12) is obtained from the normalization to the vacuum
energy of the photon field according to Eq. (10), which, using
standard properties of the spherical Bessel functions, yields

∣∣aM
�m

∣∣2 = 2h̄ωr

ε0ε �(� + 1)R3

[
x3

x3
[

j2
� (x) − j�−1(x) j�+1(x)

] + x2 j�(x) j�−1(x) − x� j2
� (x)

]
x=krR

. (13)

The transition amplitude from an initial state |mi〉 to a final state |mi + 1〉, through one-magnon absorption, given in Eq. (9),
can now be expressed in closed form through

g+
f η

∣∣∣∣
f →0

= −h̄ωr
√

(� − mi )(� + mi + 1)

ε0ε �(� + 1)

×
[

(2� + 1)2
[

j2
� (x) − j�−1(x) j�+1(x)

]
(2� + 1)2 j2

� (x) − 4�(� + 1) j�−1(x) j�+1(x) + (� + 1) j2
�−1(x) − � j2

�+1(x)

]
x=krR

. (14)

This analytical formula nicely reproduces the results of the exact numerical calculations at low values of the Faraday
coefficient, as shown in Fig. 3(b), enabling one to treat spheres characterized by a low Faraday coefficient as if they were
unmagnetized.

At this point, it is also insightful to evaluate the expectation value of the photon spin [43,64,65] at the given TE Mie modes

〈S〉M
�m = ε0ε

2iωr

∫
V

d3r
[
EM∗

�m (r) × EM
�m(r) + μ0

ε0ε
HM∗

�m (r) × HM
�m(r)

]
, (15)

which, after some lengthy but straightforward algebra, gives

〈S〉M
�m = h̄m

�(� + 1)

[
(2� + 1)2 j2

� (x) + [(� + 1) j�−1(x) − � j�+1(x)]2

(2� + 1)2 j2
� (x) − 4�(� + 1) j�−1(x) j�+1(x) + (� + 1) j2

�−1(x) − � j2
�+1(x)

]
x=kr R̂

z. (16)

It should be pointed out that the indices �m, which char-
acterize the spherical vector wave functions, are associated
with the total angular momentum J = L + S, where S is
the spin angular momentum (S = 1 for photons), and not
with the orbital angular momentum L [66]. The expectation
value of the z component of the photon spin in the Mie

modes under consideration, evaluated using Eq. (16), agrees
perfectly with the results of rigorous numerical calculations
for a magnetized sphere with low f , as shown in Fig. 3(d).
An interesting observation is that, in the limit f → 0, the
reduced optomagnonic coupling rate takes its highest value
at mi = 0 or at mi = −1, i.e., when the expectation value of
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the z component of the photon spin in either the initial or
final state, respectively, vanishes, which suggests a heuristic
interpretation: As discussed in Sec. III, g± are essentially
given by the matrix element of the x and y components
of the photon spin operator between the initial and final
states. Given that the spin magnitude remains constant (it
equals 1 for photons), the reduced optomagnonic coupling
strength should exhibit a maximum when the expectation
value of the z component of the spin in the states involved
becomes vanishingly small. This is indeed confirmed by our
numerical calculations also for the magnetized sphere, as
shown in Fig. 3(c). In the magnetized sphere, say, along the
positive z direction ( f < 0), according to Eq. (4), there is a

positive contribution − f Sz to the electric permittivity tensor.
Our rigorous full electrodynamic calculations show that this
intrinsic material polarization increases the expectation value
of the z component of the photon spin at a given mode m by
an amount proportional to the material’s gyrotropy, quantified

by the Faraday coefficient. As a result, the 〈Sz〉-versus-m
curve in Fig. 3(d) shifts upwards, as shown in Fig. 3(c),

and therefore 〈Sz〉 vanishes at a negative value of m. This
implies a corresponding shift of the maximum of the reduced
optomagnonic coupling strength, as shown in Fig. 3(a). The
opposite happens if we reverse the magnetization direction,
which corresponds to positive values of f . Let us denote by

m0 the point at which 〈Sz〉 vanishes, as obtained, e.g., by linear
interpolation between the successive (integer) values of m

where 〈Sz〉 changes sign. On the basis of the above discussion,
m0 is expected to increase with f . This is indeed confirmed
by our rigorous numerical calculations, as shown in Fig. 4. It
can be seen that, interestingly, m0 varies linearly with f for
| f | < 0.01.

So far, we have considered triply resonant optical tran-
sitions at visible frequencies between Zeeman-split Mie
modes of a dielectric magnetic microsphere, driven by Kittel
magnons, which satisfy the appropriate selection rules. It
would be now interesting to compare the calculated efficien-
cies, depicted in Fig. 3, with those attained in corresponding
larger spheres, where the triple-resonance condition is met
between successive optical WGMs. In the low magneto-
optical coupling regime, | f |  1, which is typical in the
relevant literature [17–19], we can derive closed-form analytic
expressions for such transitions as well. We note that in that
case, parity invariance, implied by the general selection rules
deduced in Sec. III, translates to polarization conversion along
with an increase or decrease of � by one unit, while mf = mi ±
1. For example, for an optical transition from an initial (TM,
�, m) mode to a final (TE, � + 1, m + 1) mode, we obtain

g+
f η

= iaM
�+1m+1 aN

�m

× �(� + 2)
√

(� + m + 1)(� + m + 2)√
(2� + 1)(2� + 3)

Irad(R), (17)

where

Irad(R) = R2

k2
M − k2

N

[kN j�+1(kMr) j�(kN r)

− kM j�+1(kN r) j�(kMr)], (18)

FIG. 4. A magnetic Bi:YIG sphere of radius R = 0.6 μm, with
relative permittivity ε = 6.5 and variable Faraday coefficient ranging
from f = −0.02 to f = 0.02. For each value of f , we determine
the point m0 at which the expectation value of the z component

of the photon spin 〈Sz〉 vanishes by linear interpolation between

the successive Zeeman-split TE�=12,ν=1-Mie modes |m〉, where 〈Sz〉
changes sign. The plot displays the variation of m0 with f . The
dashed line is a guide to the eye marking the linear variation.

with |aN
�m| = |aM

�m| given by Eq. (13) and kM, kN being the
wave numbers of the respective modes. For spheres with
radii similar to those used in relevant experiments [1,17–
19,24,35], i.e., ranging from 200 to 500 μm, the normalized
spin-wave amplitude η is of the order of 10−9, and assuming
m = � for the WGMs [32], we obtain g̃+/| f | ∼ 1 MHz at
the frequencies under consideration, which is almost three
orders of magnitude smaller than the maximum values of
g̃+/| f | in Fig. 3(b). Therefore, the operation of magnetic
garnet microspheres as optomagnonic resonators, proposed
in the present work, exhibits significantly stronger coupling
between Vis/NIR photons and magnons. Even for moderate
values of f , which are appropriate for NIR frequencies
where optical losses are vanishingly small [67], for instance,
f = −0.002, the optomagnonic coupling strength g̃+ can be
as large as 1 MHz.

V. CONCLUSIONS

In summary, we carried out a thorough theoretical study of
triply resonant photon transitions between Zeeman-split Mie
modes, driven by a uniform-precession spin wave, in magnetic
garnet microspheres. After deriving rigorous selection rules
based on general group theory considerations, we evaluated
the corresponding transition amplitudes to first-order Born
approximation by accurate full electrodynamic computations.
The observed systematic variation of the transition amplitude
was consistently explained using the concept of the photon
spin in the states involved. Due to the significantly reduced
magnon mode volume, the predicted optomagnonic coupling
strengths are almost three orders of magnitude larger than
those expected in corresponding transitions between WGMs
of respective (sub)millimeter-sized resonators as reported in
the relevant literature. These findings were also supported,
and further elucidated, by approximate analytical calculations
based on closed-form formulas that we derived in the low
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magneto-optical coupling limit. Our results suggest a vi-
able way forward for realizing high-efficiency optomagnonic
micron-sized resonators.
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APPENDIX

For the Mie eigenmode problem considered here, we set a
null external excitation, and the CFVIE-DSE, assuming time
dependence of the exp(−iωt ) form, becomes

[
E(r)
H(r)

]
−

[
k2

0 I + ∇∇·
−ik0

√
ε0
μ0

∇×

] ∫
V

d3r′g(r − r′)(ε − I ) E(r′) = 0,

(A1)

where V is the volume of the sphere; E(r) and H(r) are the
total electric and magnetic fields valid at any point r inside
and outside the resonator; k0 = ω

√
ε0μ0 is the free-space

wave number, with ε0 and μ0 being the free-space permittivity

and permeability, respectively; I is the unity dyadic; and
g(r, r′) is the free-space Green’s function. Next, the electric
and magnetic fields are expanded into linear combinations of

Dini-type spherical vector wave functions (SVWFs) [36][
E(r)
H(r)

]
=

∑
�,m, j

[
��m j

��m j

]
M�m

(
κM

�m j, r
) +

[
��m j

T�m j

]
N�m(κN

�m j, r)

+
[

Z�m j

��m j

]
L�m

(
κL

�m j, r
)
, (A2)

with ��m j , ��m j , Z�m j , ��m j , T�m j , and ��m j being unknown
expansion coefficients. The corresponding SVWFs are de-
fined as

M�m
(
κM

�m j, r
) = ∇ × r j�

(
κM

�m jr
)
Y�m(θ, φ), (A3)

N�m
(
κN

�m j, r
) = 1

κN
�m j

∇ × ∇ × r j�
(
κN

�m jr
)
Y�m(θ, φ), (A4)

L�m
(
κL

�m j, r
) = 1

κL
�m j

∇ j�
(
κL

�m jr
)
Y�m(θ, φ), (A5)

where j� are the spherical Bessel functions and Y�m are the
orthonormal spherical harmonics [68]. The Dini-type wave
numbers κM

�m j , κN
�m j are selected to establish orthogonality

of M�m and N�m within the volume V , while κL
�m j are cho-

sen to ensure decoupling between N�m and L�m in V , i.e.,
〈N�m|L�m〉 = 0 [36]. The corresponding expansions for the
electric displacement D(r) = ε0εE(r) and magnetic flux den-
sity B(r) = μ0H(r) involve only the divergenceless M�m and
N�m SVWFs because in a region free of charges ∇ · D = 0,
while ∇ · B = 0 [37].

As a concluding remark, we stress that our established
CFVIE-DSE method was recently applied and compared with
the discrete eigenfunction method [69] in Refs. [40,42] for
studying various complex resonances in combined perfectly
electric conducting anisotropic spheres, including magnetic
plasmon resonances in ferromagnetic resonators, and WGMs
in semiconductor nanospheres.
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