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In their paper in Optica 6, 104 (2019), Mann et al . claim that linear, time-invariant nonreciprocal structures cannot
overcome the time-bandwidth limit and do not exhibit an advantage over their reciprocal counterparts, specifically with
regard to their time-bandwidth performance. In this Comment, we argue that these conclusions are unfounded. On the
basis of both rigorous full-wave simulations and insightful physical justifications, we explain that the temporal coupled-
mode theory, on which Mann et al . base their main conclusions, is not suited for the study of nonreciprocal trapped
states, and instead direct numerical solutions of Maxwell’s equations are required. Based on such an analysis, we show
that a nonreciprocal terminated waveguide, resulting in a trapped state, clearly outperforms its reciprocal counterpart;
i.e., both the extraordinary time-bandwidth performance and the large field enhancements observed in such modes are
a direct consequence of nonreciprocity. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing
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The paper by Mann et al . [1] investigates a time-invariant,
unidirectional waveguide interacting with a cavity [Fig. 1(a)],
concluding that the behavior of the cavity remains unchanged by
the presence of the waveguide. This conclusion is then generalized
to stating that time-invariant nonreciprocal systems cannot over-
come the time-bandwidth (T-B) limit. These assertions appear to
conflict with our previous work on a terminated unidirectional
waveguide [Fig. 1(b)], which we deployed to report that large
(by a factor of ∼1000) T-B violations in linear, time-invariant
nonreciprocal systems could be achieved [2].

However, in this Comment we will show that the discrepancy in
the conclusions of these two works stems entirely from the nature
of the selected tool of analysis used in Ref. [1]: the main conclu-
sions reached by Mann et al . concerning the T-B performance
of linear time-invariant systems were on the basis of a temporal
coupled-mode theory (TCMT), thereby relying on an analytic
TCMT approximation ansatz [1,3], whereas all the numerical
results of Ref. [2] reporting large T-B violations in the same systems
were based on full-wave finite-difference time-domain (FDTD)
simulations [2]. We will outline that the TCMT used in Ref. [1]
is not suited for the study of the structure reported in Ref. [2],
which includes a trapped state [blue shading in Fig. 1(b)], and
that the extraordinary T-B performance observed in [2] is a direct
consequence of the nonreciprocal nature of the device.

To begin, we recall that TCMT [3] describes the evolution of a
field inside a cavity according to the following equation:

da
dt
= iω0a − (γi + γr )a + κins+, (1)

where a is the field amplitude inside the cavity,ω0 is the resonance
frequency dictated by the cavity (or cavity mode), γi and γr are the
intrinsic and radiative loss rates, respectively, |s+|2 is the power
incident onto the cavity from an external system, e.g., a waveguide,
and κin is the coupling coefficient between that external system and
the cavity.

Equation (1) is satisfied when the field inside the cavity takes the
form

a(t)= a0e iω0t−t(γi+γr ), (2)

where,

a0 =
κins+

i(ω0 −ω)− γi − γr
. (3)

Note, here, that Eq. (3) has the exact same form as Eq. (4) of
Ref. [1]. We see that the in-coupling coefficient,κin, determines the
amplitude of the field inside the cavity; the frequency-dependent
behavior is solely dependent on the denominator. Specifically, the
cavity has a half maximum when |ω−ω0| = γi + γr . Therefore,
the bandwidth 1ω of an ordinary closed cavity is directly linked
to the energy decay rate (1ω= γtot = γi + γr ) [2], and it is thus
inversely proportional to the decay (storage) time, resulting in the
well-known time-bandwidth limit [2]. Note that this depends only
on the cavity properties, independent of the nature of the feeding
waveguide (reciprocal or nonreciprocal).
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Fig. 1. Two systems considered in this Comment, both featuring a unidirectional magneto-optic waveguide (red/green region) bounded by metal layers
(gray) and exhibiting a wedge mode (also called trapped state or open cavity) at the termination (blue shading). (a) Mann et al.’s case in which the waveguide
couples to a lossless metallic cavity. The gap in the metal (slit) acts as both the input and output ports of the cavity, which is therefore not strictly unidirec-
tional. (b) Same waveguide, but simply terminated by a plasmonic metal layer [2].

However, intrinsic to this TCMT description are several key
assumptions and approximations, making this approach inappli-
cable to nonresonant trapped states (e.g., the blue shaded regions
in Fig. 1). As shown below, the conclusions drawn by Mann et al .
based on such a TCMT analysis cannot, therefore, be extended to
the trapped state. We note that these states are refered to as “wedge
mode,” “open cavities,” or “trapped states” in varying works, and
for the remainder of this Comment we shall use the latter term.

The standard form of TCMT, analyzed in detail in [1] both for
reciprocal and nonreciprocal feeding, assumes that a cavity mode
must be a confined, oscillatory mode with a well-defined, single
resonance frequencyω0; that is, it describes resonances peaked at a
single frequency ω0 [owing to the ‘iω0a ’ term in Eq. (1)]. Such an
assumption for a resonance, i.e., that it should have a well-defined
single peak (at an ‘ω0’), though reasonable in ordinary cavities,
does not describe key features of the trapped state of Fig. 1(b)—a
point that is now clarified and proved below, with the aid of Fig. 2.
Here (in Fig. 2), we apply TCMT to the system [1,3,4], with
ω0 being the central frequency of the complete unidirectional
propagation (CUP) region [2], and compare these calculations
with direct numerical solutions of Maxwell’s equations, obtained
through FDTD simulations of exactly the same structure and
conditions. Specifically, in both cases, we use the same lossy struc-
ture (with v = 5× 10−4ωp [2], characterizing the losses of InSb)
and eliminate cavity back-reflection(s) [3,4] in both calculation
approaches. We see from Fig. 2 that the FDTD calculation predicts
a broad and flat-top (no single-peak/plateaued) response, while
TCMT predicts a narrowband response peaked, as always in that
theory, at a single frequencyω0.

Which one is the physically correct result? Clearly, the physi-
cally correct result is that of the FDTD method because within
the CUP region the trapped state cannot radiatively escape its
localization region, and therefore it can only ‘escape’ the system
nonradiatively, by eventually being 100% absorbed within the
entire CUP region—as shown by the red curve in Fig. 2. As such,
TCMT is, evidently, not applicable to the trapped state, whose
bandwidth is here, as calculated from Fig. 1, in fact∼ 1000 broader
than that predicted from TCMT. This factor (∼1000) is in fact
the degree to which the T-B limit is overcome in the structure of
Fig. 1(b), as was reported in Fig. 4 of Ref. [2], precisely because,
as was also outlined above, the TCMT always gives rise to T-B-
limited resonances [2]. In other words, one cannot deploy (at least,
the standard form of ) a TCMT approximation, which inher-
ently gives rise to T-B-limited resonaces, to investigate whether
a structure might violate (or not) the T-B limit—the result will

Fig. 2. Absorption resonance of the trapped state in the nonrecip-
rocal structure of Fig. 1(b), as calculated through FDTD simulations
(red) and a temporal coupled-mode theory analysis (green)—in both
cases, for exactly the same lossy structure and reflectionless scenario.
From the FDTD simulations it is found that at the center of the CUP
region γi ∼ 3.0614× 109 rad/s [cf. Eq. (1)]. In the temporal coupled-
mode theory calculation, the γr term [cf. Eq. (1)] is also set equal to
∼3.0614× 109 rad/s, to allow for the absence of back-reflection(s) from
the terminating cavity [3,4]. For the FDTD calculation, the shown
absorption profile was calculated in the near field of the excited non-self-
sustained [5] bulk plasmon [6] of the terminating (planar) Ag particle,
which here itself acts as an open cavity (see also main text), similarly to
standard calculations of absorption profiles of plasmonic particles in
nanoplasmonics [6].

always be negative, owing to the inherent ‘structure’ (ansatz) of
that theory. For such an analysis, ab initio full Maxwell solvers are
required, as Fig. 2 above shows, and as Ref. [2] has reported. Note
that, interestingly, here, TCMT fails even in the low-loss regime
where it is usually successfully applied (e.g., in silicon photonics
or in dielectric photonic crystals; cf. lossless structure studied in
Ref. [1]); i.e., the failure arises not from the second term on the
right-hand side of Eq. (1), but from the first term (‘iω0a ’) on
the same side of Eq. (1)—a feature that, to our knowledge, has
not been identified in the past, since it does not normally arise in
ordinary (non-topological) resonant structures.

Mann et al . have also taken the in-/out-coupling rates in a non-
reciprocal cavity shown in Fig. 2(a) of Ref. [2] (indicated therein,
respectively, with cyan/red colors) to represent the total in-/out-
coupled energy rate (power), whereas in fact those rates only refer
to the radiative part of the power, as was explained in Ref. [2] (cf.
‘τout’ in Fig. 2(a) of Ref. [2] with ‘τout’ in Eq. (3) of Ref. [2]; i.e., the
red arrow in both panels of Fig. 2(a) of Ref. [2] is associated with
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Fig. 3. Reciprocal versus nonreciprocal open cavities. (a) Shown is the time evolution of the electromagnetic energy in an open “box” adjacent to the ter-
minating end of the structure of Ref. [2], for both a reciprocal (black dashed–dotted curve; B= 0 T) and a nonreciprocal (red solid curve; B= 0.2 T) struc-
ture. For the remaining two curves, please refer to Fig. 3(b) of Ref. [2]. (b) Local electric field in the “box” of the reciprocal structure, recorded at various time
instances (in units of Tp = 1/ f p , with f p being the plasma frequency of InSb). (c) Same as in (b), but for the nonreciprocal structure—cf. Fig. 3(a), right
panel, of Ref. [2].

the ‘1/τout’ radiative out-coupling power, not with the total, dis-
sipative ‘1/τ0’, plus radiative,‘1/τout’, rate). In other words, for
Lorentz reciprocity to be broken in a cavity resonator, one only
needs to (radiatively) in-couple light energy to the cavity, and then
the light energy should not radiatively escape the cavity—but all
light energy will still, nonradiatively (that is, via heat) “escape” the
cavity, as shown in Fig. 3(b) of Ref. [2], and still further herein in
Fig. 2. In fact, this is precisely the physical origin of the ∼100%
absorption in the whole CUP region reported in Fig. 2 herein. We
note that this definition of nonreciprocity in a resonator is com-
pletely analogous to the well-known definition of nonreciprocity
for a waveguide (also reported as Eq. (2) in Ref. [2]) where the wave
transmission from a point A to a point B should be different from
the wave transmission from point B to point A—that is, reference is
made to the radiative power, to the transmission (we do not ‘send’
Joule losses from A to B, or from B to A). Thus, to break Lorentz
reciprocity in a resonator too, one needs to make unequal only the
radiative parts of the in-/out-coupled powers—as was reported
and explained in Ref. [2]. The total (radiative + dissipative) in- and
out-coupled powers are always equal at steady state, as dictated
from Poynting’s theorem (which is automatically respected in
FDTD simulations).

Further, in Ref. [1] Mann et al . observe a localized hotspot,
which they refer to as a wedge mode, i.e., the trapped state. They
conclude that both their trapped state, as well as the one observed
in Ref. [2], are not due to nonreciprocity, but simply an example
of plasmonic focusing, i.e., a tapered plasmonic waveguide, with
nonreciprocity only providing impedance matching. We will
now show that this is a misconception, and that nonreciprocity
is fundamental to the performance of the device. Specifically, we
will show that in the reciprocal version of the device the electro-
magnetic energy is not confined to a localized region, and while
a field enhancement is observed, it does not represent the same
focusing nor enhancement factor. Crucially, we will also show that
in the reciprocal case the energy of the trapped state decays in a tiny
fraction of that of the nonreciprocal structure—that is, the T-B
performance of the nonreciprocal structure is drastically superior.

To this end, Fig. 3 reports FDTD calculations, similar to those
presented in Ref. [2], displaying (a) the energy density in the termi-
nation as a function of time and (b),(c) the spatial distribution of
the electromagnetic energy at various times for both the (b) recip-
rocal and (c) nonreciprocal cases. In all cases, the same device as in
[2] is investigated [cf. Fig. 1(b)], with the difference being that for
the reciprocal case no external magnetic field is applied (B= 0 T),
while the nonreciprocal case features an applied external magnetic
field (B= 0.2 T). Furthermore, the group velocity of the incident
light in both cases is almost exactly the same (vg = 0.0681c for
B= 0 T and vg = 0.0673c for B= 0.2 T); thereby any differ-
ence(s) in behavior cannot be attributed to conventional slow-light
effects. From Fig. 3(a), we clearly see that the reciprocal device
has a much faster decay rate than its nonreciprocal counterpart.
In both cases, the pulse propagates (slowly, with the aforemen-
tioned group velocities) towards the termination. However, once it
reaches the termination, the behavior starts to differ dramatically.
For the reciprocal structure, the pulse enters the trapping region
and is then back-reflected, resulting in a rapid decay of the energy
within the open cavity region. For the nonreciprocal case, how-
ever, the back-reflection cannot occur (as there is no backwards
propagating mode), and light is now trapped in the open cavity
region, decaying slowly only because of dissipative losses (material
absorption). We also note from Fig. 3(a) that if the magnetic field is
reversed [−0.2 T lines in Fig. 3(a)], then the pulse can be recovered
at times much later than for the reciprocal case. Therefore the
nonreciprocal structure clearly outperforms the storage capabilities
of conventional plasmonic focusing, with the increased storage
time, i.e., delay, being a direct consequence of nonreciprocity.

To further demonstrate this argument, we show the electromag-
netic field within the trapping region (∼798 µm< x < 800 µm)
for both the reciprocal [Fig. 3(b)] and nonreciprocal [Fig. 3(c)]
cases, at different times, normalized to the amplitude of the inci-
dent pulse. We observe that, for both cases, the maximal field
enhancement occurs at a time t = 100 Tp (Tp = 1/ f p , where f p

is the plasma frequency of InSb). However, for the reciprocal case
we observe only a ∼5 times amplitude enhancement (i.e., con-
ventional plasmonic focusing), and we see that over the observed
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spatial region the field is approximately uniform. In contrast, for
the nonreciprocal case we observe that at the same time instant the
amplitude enhancement is by a factor of ∼3300—almost three
orders of magnitude above the conventional result (reciprocal
structure). Furthermore, the field is confined in a significantly
smaller spatial region. The same pattern is observed at all times;
i.e., at any point in time the reciprocal structure has a local field
amplitude at the focusing tip several orders of magnitude smaller
than that in the nonreciprocal structure, and spreads out uniformly
in the spatial region of interest, while the nonreciprocal structure
displays extraordinary amplitude enhancement and localization of
the field in a smaller spatial region. As such, the argument made in
Ref. [1] that the observed effect is conventional plasmonic focus-
ing is clearly unfounded and in contradiction with the observed
behavior of the device. Both the field enhancement and the T-B
performance are dominated by the nonreciprocal nature of the
device. These T-B-related differences between nonreciprocal
(topological [7,8]) and reciprocal (ordinary) terminated structures
become even more pronounced when realistic surface roughness
and material imperfection effects are considered, as it is well-
known that reciprocal such structures may even lose their ability
to focus and localize light at their tip [9], whereas the nonrecip-
rocal structure of Fig. 1(b), being topological [7,8], is completely
immune to such effects [7].

Finally, a few points and clarifications are due with regard to
the potential role of nonlocality [10,11] on the attained, large, T-B
violations, as well as on the nature of the ‘open cavity’ considered in
Ref. [2] and in (the blue spot of ) Fig. 1(b) herein. First, the objec-
tive of Ref. [2], as well as of the present Comment, was to show
that the T-B limit can be exceeded by essentially an arbitrarily high
degree in local (non-spatially-dispersive), linear, time-invariant
structures—that is, the same type of structures considered in
Ref. [1], as well as in similar previous works [12–14], which rea-
soned that no such violations may exist in such structures for
fundamental reasons [14]. The results and physical justifications
presented here, as well as in Ref. [2], rigorously show that the T-B
limit characterizing local, linear, time-invariant structures can be
overcome so long as such a violation is topologically enforced and
protected . Second, even when nonlocal effects are considered, one
may always redesign the terminated structure considered here and
in Ref. [2], e.g., simply by removing the dielectric (Si) layer, such
that it can robustly preserve its unidirectional and topological char-
acter even in the presence of nonlocality, and for arbitrarily small
levels of dissipation, as has recently been shown in Ref. [11]—thus,
nonlocality cannot for fundamental reasons, i.e., for all possible
structures, destroy topological protection (topology), since the
latter is a deeper and more fundamental property. Third, there is
no need for termination and its associated large field enhancement
in a tight region [cf. Fig. 3(c) and brief discussion below], which
might give rise to nonlocal effects, as ultrabroadband light trapping
[15,16] and releasing [17] can also exist in topological (unidirec-
tional) ‘trapped rainbow’ structures [18,19], which can stretch
out and localize (trap) a lightfield in tapered guides in a manner
stable even under fabrication disorders [15]. Fourth, for device
applications of such T-B violations, other important phenomena,
such as nonlinear and thermal effects [19], will need to be consid-
ered, both of which can, however, be addressed by, e.g., lowering
the injected light power or resorting to cryogenic conditions. It is
also to be stressed that the trapped state considered in Ref. [2] and
in this Comment is formed by a non-self-sustained [5] bulk (not

surface) plasmon [6] of the terminating Ag layer: the E x -field com-
ponent, perpendicular to the terminating Ag layer, is dramatically
enhanced, inducing free charges on its surface (bulk plasmon), and
it is the near field of that bulk plasmon that the pulse is in-coupled
to, without reflection(s) across the entire CUP region. Such plas-
monic particles, and their associated bulk plasmons, are typically
referred to as ‘open cavities’ in the field of (nano)plasmonics [6].
Therefore, the lossy topological [7] ‘open cavity’ (i.e., the Ag par-
ticle) in Ref. [2] and herein is fundamentally different from the
lossless perfect-electric-conductor ordinary cavity terminating
the unidirectional waveguide of Ref. [1], which, therefore, not
surprisingly, does not reproduce the behavior reported in Ref. [2].

In conclusion, the paper by Mann et al . [1] makes an inter-
esting contribution in that it convincingly shows that any system
whose dynamics are accurately described by (the standard, single-
resonance form of ) a TCMT approximation is T-B limited, even
when nonreciprocally fed. However, by not recognizing the afore-
outlined inherent limitations of such a method of analysis, and the
fundamental differences of the structure they considered compared
with that in Ref. [2], Ref. [1] reached the generalized conclusion
that all (local) linear, time-invariant structures are T-B limited,
including the one shown in Fig. 1(b) herein, studied previously in
Ref. [2]—a conclusion that is unwarranted, as explained in some
detail above. Moreover, the assertion of Ref. [1] that nonreciproc-
ity does not beget any specific advantage(s) in terms of the T-B
performance of a device is unjustified too, as was clearly shown in
Fig. 3 above. Thus, overall, this Comment helps to clarify that the
time-bandwidth limit can be exceeded, in fact to an arbitrarily high
degree as Ref. [2] has previously reported, even in (local) linear,
time-invariant structures, that topology and nonreciprocity play
a crucial role in achieving this feat, and that the standard form of,
otherwise powerful, quasi-analytic techniques, such as TCMT that
was deployed in Ref. [1], fails to accurately describe the dynamics
and physics of (open) nonreciprocal cavities, even in the low-loss
regime where they are normally successfully applied.
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