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Arbitrarily high time bandwidth 
performance in a nonreciprocal 
optical resonator with broken time 
invariance
ivan cardea1, Davide Grassani1,7, Simon J. fabbri1, Jeremy Upham2, Robert W. Boyd2,3, 
Hatice Altug4, Sebastian A. Schulz5, Kosmas L. tsakmakidis6 & camille‑Sophie Brès1*

Most present‑day resonant systems, throughout physics and engineering, are characterized by a strict 
time‑reversal symmetry between the rates of energy coupled in and out of the system, which leads 
to a trade-off between how long a wave can be stored in the system and the system’s bandwidth. 
Any attempt to reduce the losses of the resonant system, and hence store a (mechanical, acoustic, 
electronic, optical, or of any other nature) wave for more time, will inevitably also reduce the 
bandwidth of the system. Until recently, this time‑bandwidth limit has been considered fundamental, 
arising from basic Fourier reciprocity. In this work, using a simple macroscopic, fiber-optic resonator 
where the nonreciprocity is induced by breaking its time‑invariance, we report, in full agreement with 
accompanying numerical simulations, a time-bandwidth product (TBP) exceeding the ‘fundamental’ 
limit of ordinary resonant systems by a factor of 30. We show that, although in practice experimental 
constraints limit our scheme, the TBP can be arbitrarily large, simply dictated by the finesse of 
the cavity. our results open the path for designing resonant systems, ubiquitous in physics and 
engineering, that can simultaneously be broadband and possessing long storage times, thereby 
offering a potential for new functionalities in wave-matter interactions.

The time-bandwidth product (TBP) is a relational property characterizing all individual resonators, whether 
they are of mechanical, acoustic, electrical, atomic or optical nature. A general definition of the TBP should 
consider the product between the acceptance bandwidth (∆ωacc) of the system, which does not necessarily coin-
cide with the measured cavity linewidth as will be explained later, and its characteristic decay, or ‘storage’, time 
(τout). The majority of present-day resonant systems, are reciprocal in nature and, consequently, time-reversal 
symmetric. Therefore, if wave energy may be coupled out of such systems, an exactly equal amount of energy 
can be coupled in simply by ‘reversing’ time. In practice, in a reciprocal resonant system, ∆ωacc coincides with 
the cavity linewidth, and, therefore, its TBP is always limited to unity by Fourier relation stating ∆ωcav = 1/τout, a 
value commonly referred to as the ‘time-bandwidth limit’1–3. This inherent limitation simply dictates that long 
storage times unavoidably imply narrow input bandwidths, while large bandwidths are unfortunately retained 
only for short periods of time. Photonics is particularly affected by the time-bandwidth limit. On the one hand, 
long interaction times are required for storage of optical pulses and efficient light-matter interaction (such as 
absorption, emission and nonlinear optical effects). On the other hand, broadband signals are desirable since 
they are normally associated with larger amount of information.

Over the last twenty years, several optical designs aiming at overcoming this limitation have been investigated. 
One approach consists of leveraging slow-light waveguides. Such systems exploit the characteristic refractive 
index dispersion near resonances, due to intrinsic electronic  transitions4–6 or induced by stimulated  Brillouin7,8 
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or Raman  scattering9,10, or Bragg reflections in periodic  structures11, to slow down the propagation speed of light 
in the medium. All of these systems operate in the ‘waveguide regime’, even when they include coupled resonator 
waveguides, where there is single-pass light propagation and continuous dispersion. In this regime, the time-
bandwidth performance of the device is inherently different from that of isolated resonators. Rather than being 
coupled to a resonant mode, light undergoes a delay that can be extended by either increasing the group index or 
the propagation length. Nevertheless, these systems are still characterized in terms of a group-index–bandwidth 
 limit12 or a time-delay–bandwidth–footprint limit. In both of these terms, slow-light waveguides are intrinsically 
limited, and – similarly to resonant systems – the achievable delay times remain inversely proportional to (a 
power of) the waveguide’s bandwidth, Δt ~ Δω−α, where typically α = 2 or  34,13,14. Here, the trade-off arises from 
pulse temporal broadening owing to various dispersion phenomena (2nd and 3rd order dispersion, dispersion 
of gain/absorption), preventing significant slowing-down of broadband  signals4,7,13,14.

Another attempt to overcome the time-bandwidth limit was reported some time  ago15. That scheme made 
use of temporal adiabatic switching of a system between two reciprocal states: a large-bandwidth–short-storage-
time state (low quality factor, Q, state) and a narrow-bandwidth–long-storage-time one (high-Q state). However, 
while the time-bandwidth limit was marginally exceeded (by a factor of 2 or less), the spectral and temporal 
shapes of the released pulse were not preserved; rather, they strongly depended on the property of the reopened 
cavity, leading to substantial distortions of the released  pulse15–20. Crucially, the simultaneous storage of multiple 
pulses in the system cannot be achieved with that scheme: while the bandwidth of the first pulse is adiabatically 
compressed, a second pulse cannot be injected into the device.

More recently, a  proposal21 for arbitrarily overcoming the time-bandwidth limit of resonant systems was put 
forward, based on breaking Lorentz reciprocity22,23 in the resonant system, without accompanying adiabaticity 
or signal distortion limitations. This theoretical proposal has reinvigorated a debate about whether (or not) the 
time-bandwidth limit can be exceeded in resonant  systems24–26. However, much of this recent theoretical activity 
on nonreciprocal resonators has been focused on time-invariant systems.

In this work, we provide the first experimental confirmation that inducing nonreciprocity by breaking the 
time-invariance in a cavity system we can overcome the ‘fundamental’ time-bandwidth limit. Using a macro-
scopic, fiber-optic resonator, in which Lorentz reciprocity is broken by suitable time modulation (i.e. time variant 
system), we report a TBP above the fundamental limit of ordinary reciprocal cavities by a factor of 30, solely 
limited by current experimental constraints of our setup. The non-adiabatic switching from fully-open to fully-
closed state does not affect the spectral and temporal properties of the injected pulses, and allows for simultane-
ously storage of multiple pulses. Overall, our resonant system is Lorentz-nonreciprocal owing to breaking of 
its time-invariance22,23,27–30, allowing us to decouple cavity photon lifetime from cavity acceptance bandwidth.

A general definition of the TBP can be obtained in terms of the system’s loading (ρL) and decay (ρD) energy 
rates as:

where ∆ωacc and ∆ωcav, are the full width at half maximum of the Lorentzian functions associated, through the 
Fourier transform, respectively to the loading and decay curves of the intra-cavity energy (see Supplementary 
Information). As it is well known, the decay of the energy stored within a cavity is caused by the loss of power 
through radiative (transmission through coupling elements such as mirrors, couplers etc.) and non-radiative 
processes (absorption losses), which are taken into account by the out-coupling ρout and intrinsic ρ0 energy decay 
rates, respectively. The total decay rate can therefore be expressed as: ρD = ρout + ρ0. Analogously, the loading curve 
depicts how fast the intra-cavity energy would exponentially grow if the resonator was ‘fed’ through the same 
processes but reversed in time. As a result, loading rate can be expressed as ρL = ρin + ρ0, with ρin and ρ0 that now 
are the in-coupling rate and intrinsic loading rate of energy respectively. In fact, even if the incident light is an 
arbitrary waveform, the optimum coupling in a resonator is the time reversed version of the decay curve, which 
corresponds to an exponentially increasing  waveform27,31. Therefore, the acceptance bandwidth that must be 
considered is the full width at half maximum (FWHM) of the Lorentzian function obtained from the Fourier 
transform of the loading curve. It represents the maximum input Lorentzian linewidth allowed by the resonator 
in one free spectral range (FSR). In reciprocal resonant devices, ρout = ρin

21,32 leading to ρL = ρD. The system is 
said time-reversal symmetric and, as a result, ∆ωacc = ∆ωcav and TBP = 1. For such a system, the bandwidth of an 
incoming pulse must be equal to or smaller than the measured resonance linewidth in order to be entirely coupled 
in the reciprocal cavity. However, in a time-variant nonreciprocal system, we can decouple ρin from ρout, so that the 
time-reversal symmetry no longer holds. If the loading process can be made faster than the decay process, mean-
ing that ρL > ρD, the system can show an arbitrary large TBP. This concept is schematically illustrated in Fig. 1a.

experimental implementation. We experimentally implemented such a system, at telecommunication 
wavelengths (around 1.55 μm), based on a Sagnac interferometer connected to a highly reflective element, also 
known as Figure-9 fiber  cavity33–36 (see “Methods”). We use this simple known fiber configuration, similar in 
some ways to a recirculating fiber loop, as a platform to demonstrate for the first time a corroboration of the 
theory that a resonant system with a nonreciprocal coupling can exhibit an arbitrarily high  TBP21. We break the 
time-invariance by using localized time-varying phase modulation asymmetrically positioned inside the Sagnac 
loop, thereby inducing nonreciprocity in the overall system (see Supplementary Information). This allows us to 
change in time the in-coupling/out-coupling energy rate of the resonator, which results in a dynamic control of 
the cavity Q-factor. The induced change is non-adiabatic because the modulation is shorter than the round trip 
time of the cavity (TRT), which is the inverse of the frequency separation between the resonance  lines37,38. As 
depicted in Fig. 1b, light pulse incident to the R port of the 50/50 coupler is split in clockwise (CW) and counter-

(1)TBP = �ωaccτout =
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clockwise (CCW) pulses travelling through the loop. If no phase modulation takes place, the two pulses travel 
the exact same path and constructively interfere at the reflection port R, as such exiting the resonator. However, 
if the phase modulator is electrically gated to shift by π the phase of the CCW pulse only, then the pulses con-
structively interfere at the transmission port T of the coupler and the whole light pulse is directed to the reflective 
element. During the modulator gating time, say t1 < t < t2, the system is thus a completely open cavity capable of 
fully accepting the pulse without any reflection. When the pulse is reflected back into the Sagnac interferometer 
by the reflective element, if no other gate signal is applied to the modulator, the CW and CCW pulses again 
interfere constructively at the T port, meaning that the light pulse is trapped (Fig. 1c). The system hereafter, say 
time t > t2, acts as a completely closed cavity formed by the Sagnac interferometer and the reflective element. We 
can extract the pulses from the resonator after a desired number of cavity round trips (RT) by gating once again 
the phase modulator (for t2 < t < t3), leading to switch the constructive interference to the R port, as illustrated in 
Fig. 1d. It is important to note that during each stage of operation, i.e. injection, storing and release, the system is 
reciprocal and therefore the acceptance bandwidth coincides with the cavity bandwidth. However, the breaking 
of time invariance renders the system  nonreciprocal22, since the system exhibits two different bandwidths dur-
ing the injection and the storing stages. As any other fiber optic resonator based on standard single mode fiber, 
this system is subject to the limitations dictated by dispersion and nonlinearity. Specifically, in case of storing of 

Figure 1.  (a) Exponential loading and decay curves of a time-variant nonreciprocal resonator. If ρL > ρD, the 
exponential energy loading process is faster than the decay process, and their associated bandwidths, ∆ωacc and 
∆ωcav, respectively, are different, with ∆ωacc > ∆ωcav. Implementation in a Figure-9 resonator: (b) Injection—The 
optical input pulse is fully coupled in the cavity owing to constructive interference of the CW and CCW pulses 
at the T port when a π phase shift is solely applied to the CCW pulse. (c) Storing—Once loaded, if no other gate 
signal is applied to the modulator, the CW and CCW pulses interfere constructively at the T port and the pulse 
is stored in the resonator until it is dissipated through internal loss. (d) Extraction—The pulse is extracted after a 
desired number of RTs by opening again the cavity, i.e. applying a second “gate” signal to the phase modulator to 
the CCW portion of the pulse. A gain unit (GU), can be incorporated to partially compensate for the dissipative 
loss.
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a data pattern made of a sequence of ultra-short pulses, the storage time would be limited by dispersion since 
the pulses would broaden and could cause the loss of information originally contained in the pattern. This can 
be dealt, to a certain amount, by dispersion management of the cavity. Besides, an excessively high peak power 
would induce nonlinear effects, leading to spectral broadening and distortion of the optical bit  stream39. How-
ever, this work does not aim at proposing a novel device, rather at demonstrating a theoretical principle accord-
ing to which a resonant system with a nonreciprocal coupling can exhibit an arbitrarily high TBP. Therefore, in 
the experiments, we chose the peak power and the pulse duration in order to have negligible effect of dispersion 
and nonlinearity, although, in the context of the time-bandwidth performance, in theory, there is no restriction 
regarding the peak power and the pulse duration.

To express the TBP as a function of the parameters that characterize the Figure-9 resonator, it is convenient to 
define the energy rates in terms of the in- and out-coupling transmission coefficients of the Sagnac interferometer, 
αin and αout, respectively. We have: ρL = αin/TRT + 1/τ0 and ρD = αout/TRT + 1/τ0, (see Supplementary Information), 
where τ0 is the internal, non-radiative decay time, usually associated with absorption or energy dissipation inside 
the cavity. Here τ0 also takes into account the decay of energy due to the small leakage from the reflective element. 
When the resonator is in the fully open state at time t1 < t < t2, we have αin (t1) = αout (t1) = 1. We can note that the 
system is actually not a cavity in this case, but an ordinary delay line/waveguide with a reflective termination, 
and the delay experienced by the pulse is simply TRT. It thus seems not possible to associate a linewidth to the 
cavity in the open state. However, as we have already mentioned, the acceptance bandwidth is by definition the 
FWHM of the Lorentzian profile associated to the energy loading process of the cavity. In this way, a linewidth 
related to a “fictitious” loading resonant mode, which is quantified by the in-coupling energy rate (ρin) and the 
intrinsic energy rate (ρ0), can always be associated to the cavity. This is true even in the extreme case of fully open 
state where αin (t1) = 1, and, therefore, ρL (t1) = 1/TRT + 1/τ0. Once the pulse is coupled into the resonator and the 
system is switched to the fully closed state at time t2, we have αin (t2) = αout (t2) = 0 and ρD (t2) = 1/τ0. Thus, for this 
time-variant system the TBP reduces to the following simple relation:

with Fclosed the finesse of the closed cavity. As a result, by decoupling in time the cavity photon lifetime τout (or 
equivalently the cavity bandwidth ∆ωcav) from the cavity acceptance bandwidth ∆ωacc, such that ρL (t1) > ρD (t2), 
the TBP of the system can be higher than 1. We stress that, even if the actual bandwidth physically coupled inside 
the cavity is in practice only limited by the operating frequency region of the 50/50 coupler, the acceptance 
bandwidth that has to be considered in calculating the TBP is the FWHM of the Lorentzian profile associated to 
the energy loading process. It is thus not given by the bandwidth of the incoming pulse.

The experimental setup is described in details in the methods. The input to the resonator consists of 500 ps 
Gaussian optical pulses. Since according to Eq. (2), the cavity finesse limits the TBP, we experimentally control 
Fclosed by inserting a gain unit, which consists in a homemade optical amplifier (EDFA), inside the resonator. As 
such, we can tune τ0 by varying the EDFA gain. We measure the cavity RT time to be 48 ns and 120.3 ns, without 
and with the EDFA respectively. It is important to note that the addition of an EDFA is a means to overcome 
relatively high absorption losses, adding gain without exceeding the losses, while not affecting the general prin-
ciple. In fact, an analogous amplification would never increase the TBP beyond one in a reciprocal resonator, as 
more power would simply also leak out the system at every round trip.

Results and discussion
We assess the performance of the system by measuring the energy of the pulse released after different numbers 
of RTs. Figure 2a shows the result for the passive cavity (no EDFA). The exponential decay fit of the experimental 
data corresponds to a decay time τ0 of about 65.69 ns, which allowed us to extract a pulse above the noise level 
after up to 10 RTs. This corresponds to a closed cavity decay-time of about 1.37 times longer than the cavity RT 
time, leading to a TBP of 2.37. According to Eq. (2), the maximum achievable TBP can be in principle infinite, 
providing an infinitely long closed-cavity decay time τ0, i.e. a loss-less cavity. However, in our case τ0 is limited 
by a technological constraint, specifically the absorption losses at the modulator measured to be ~ 3.17 dB/RT. 
We therefore use the active cavity configuration (with EDFA) to support the claim of arbitrarily large TBP by 
experimentally controlling the decay time of the system. We progressively adjust the power of the EDFA to par-
tially compensate the intra-cavity loss over three different steps resulting in a net loss of 0.4, 0.25, 0.15 dB/RT. 
The measurements are shown in Fig. 2b, where the experimental data is normalized to the energy of the pulse 
extracted after the first cavity RT. As the addition of the EDFA increases TRT, according to Eq. (2), this might 
actually reduce the TBP of the system. However, the significant increase in τ0 allows sustaining the pulse for up 
to 120 RTs (red curve). The decay time strongly increases from 65.69 ns up to 3.57 μs, resulting in a maximum 
TBP of 30.7. For this measurement, the period of the input pulse train lies between 30 and 31 RTs, to avoid time 
overlap between the intra-cavity pulse in its 31st round trip and the new incoming input pulse. In this way, 
we can couple multiple pulses in the resonator and extract an individual pulse after more than 30 RTs without 
affecting the others.

In principle, we could achieve an even higher TBP value by intensifying the pump power of the EDFA as to 
fully compensate the round-trip loss. Under these conditions the TBP is higher, but now limited by dispersion, 
nonlinear effects and the amplification of noise by the EDFA. However, in practice, we were limited by the gain 
saturation of the doped fiber. This effect can be seen in Fig. 2b for the configuration with 0.15 and 0.25 dB/RT 
of effective losses. In fact, here the pulses retrieved at the first RT have energies sufficiently high to saturate the 
gain of the amplifier, which cannot compensate the cavity losses in the same way as for the pulses extracted after 
more RTs. This results in higher effective cavity losses at the first experimental point, which we therefore excluded 

(2)TBP =
ρL(t1)

ρD(t2)
=

τ0

TRT

+ 1 =
Fclosed

2π
+ 1
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from the fit. Further increasing the diode pump power would have affected even more points, misleading the 
estimate of the TBP.

In order to confirm this concept, we conducted detailed simulations of the pulse storing operation using 
VPIphotonics software (see “Methods” for details). Our experimental resonator was numerically modelled in 4 
passive configurations (without EDFA): in the first one we have reproduced the exact passive experimental cav-
ity, while in the other three configurations we have set the total loss and TRT as to mimic the three values of the 
experimental active setup. The normalized energy of the pulses collected at different RTs is plotted in Fig. 2c for 
the first case and in Fig. 2d for the other three cases. For all, the TBP value is in excellent agreement with the one 
calculated after fitting of the experimental data. In particular for Fig. 2d, the exponential decay fits almost per-
fectly the experiments, showing decay times from 1.36 to 3.56 μs as the dissipative losses progressively decrease. 
The simulation not only confirm the improvement in TBP but also that we can indeed treat our active cavity as 
a passive cavity with reduced dissipative losses.

In Fig. 3 we provide an example showing the temporal traces of a 4 ns squared pulse stored in the resonator 
and extracted after different RTs, with loss of about 0.5 dB/RT. The pulse can be extracted after up to 25 RTs and 
no leakage is observed between two subsequent extracted pulses. This confirms that we can couple the entire 
pulse energy (αin ≈ 1) without any out-coupling loss (αout ≈ 0), switching the cavity from the completely open 
to the completely closed state. For this specific measurement we used a longer and square-shaped pulse because 
the acquisition memory of our oscilloscope was not sufficient to detect the 500 ps long Gaussian pulses over the 
entire time period of the pulse train (about 3.6 μs).

Fundamentally different from time-variant devices based on adiabatic  tuning15–20, here we do not need to adi-
abatically compress the input pulse bandwidth to match the closed cavity resonance and avoid scattering between 
different resonant modes. Indeed, we are in a non-adiabatic regime, as TRT is longer than the tuning time, which 
is given by the rising time of the phase modulator. Moreover, with TRT being longer than the pulse duration, 
the injected pulse does not interfere with itself and cannot ‘see’ the closed-cavity resonant modes. Therefore, 

Figure 2.  (a), Experimentally measured energy decay curve for the 500 ps Gaussian pulse extracted from the 
full polarization maintaining fiber passive resonator at every round trip time (TRT = 48 ns). (b) Experimentally 
measured energy decay curves for the pulses extracted from the amplified resonator every ten round trips (with 
TRT = 120.3 ns) for different values of loss per RT. Error bars in (b) come from fast polarization rotation due 
to the non-polarization maintaining erbium doped fiber in the gain unit, resulting in a 20% uncertainty. (c) 
Simulated energy decay curve of the passive cavity with the same actual value of loss/RT as for (a). (d) Simulated 
energy decay curves of a passive cavity configuration with the same actual value of loss/RT as for (b).
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the pulse does not need to adapt to the closed-cavity resonances and, once released, it exhibits a spectrum that 
is unaffected by the switching between the two different cavity states. To clearly show that the characteristics of 
the released pulses are preserved over all the RTs, we collected temporal waveforms and radio-frequency (RF) 
spectra (see “Methods” for details on the measurement technique) of the 500 ps Gaussian pulse after 1, 40 and 
80 RTs (Fig. 4b–d) and plotted together with those of the pulse collected before entering the cavity (Fig. 4a). The 
product of the pulse duration and bandwidth (FWHM) retrieved from the Gaussian fit was always about 0.44 
for the investigated RTs, confirming that the pulse does not suffer any measurable distortions.

conclusions
In conclusion, we experimentally demonstrated that breaking the time-invariance in a resonant system, thus 
inducing nonreciprocity, allows to arbitrarily overcome the time-bandwidth  limit21 by completely decoupling the 
input energy rate from the cavity decay time. We used localized time-varying phase modulation to dynamically 
control the Q-factor of a macroscopic fiber resonator, which we switched from a completely open to a completely 
closed state. We proved that the value of the TBP of an individual resonator is ultimately equal to Fclosed/2π + 1 
and can be increased at will above the limit, provided that internal, dissipative losses are kept sufficiently low. 
Mitigating for these dissipative losses with a gain unit, we reported a TBP 30 times above the ‘fundamental’ time-
bandwidth limit of ordinary resonators – limited only by current experimental constraints of our setup. Addi-
tionally we could simultaneously store and manipulate multiple pulses, a key capability missing from previous 

Figure 3.  Temporal traces over one period of the optical pulse train extracted after different RTs. The diode 
pump power of the gain unit was adjusted to obtain a configuration with about 0.5 dB of loss per round trip.

Figure 4.  Pulse waveforms and radio-frequency spectra acquired before the cavity (a) and after 1 RT (b), 40 
RTs (c) and 80 RTs (d). The product of the pulse duration and the bandwidth (FWHM) gives values close to the 
transform-limited pulse for all the three cases.
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adiabatic cavity modulation  schemes15,20. When retrieved, the pulses did not exhibit detectable temporal and 
spectral distortions. The presented scheme may thus open the path for applications—both fundamental and 
applied, throughout physics and engineering—where large bandwidths, long storage durations, high sensitivities 
and strong wave-matter interactions are simultaneously  desired40.

Methods
Description of the experimental setup. The resonator used in the experiments is made of polarization 
maintaining fibers with a TRT of about 48 ns, while the reflective element is a fiber Bragg grating with a center 
wavelength at 1551.3 nm and a stop bandwidth of about 28.2 GHz. The gain unit is made of 90 cm-long Erbium-
doped fiber connected with two fused fiber wavelength division multiplexers and pumped by a semiconductor 
laser diode at 980 nm. The optical input pulse train at 1551.3 nm is obtained from a laser, modulated in intensity 
to give 500 ps Gaussian pulses with 894 MHz bandwidth, and a repetition rate corresponding to about 30 cavity 
RTs. We synchronized an electrical pulse of 4 ns with the optical signal to activate the phase modulator when it is 
traversed by the CCW pulse only. Once extracted, the pulses are detected at the third port of a circulator, placed 
before the R port of the Sagnac interferometer, by using a high-speed sampling oscilloscope. Both the electrical 
signals used to drive the phase and the intensity modulator were generated by the same arbitrary waveform gen-
erator (AWG) (Tektronix model 7122B). The phase modulator used for the experiments was a  LiNbO3 electro-
optic modulator (Photline model MPZ-LN-10) with an electro-optic bandwidth of 12 GHz. The synchronization 
between the electrical “gate” and the optical signal was performed directly from the AWG by imposing a delay on 
the electrical signal that drove the phase modulator.

Methods for the measurements of the pulse waveforms and spectra. The temporal traces were 
registered by detecting the extracted pulses on a sampling oscilloscope with 20 GHz of optical bandwidth. Given 
the limited resolution of our OSA, a direct measurement of the pulse spectrum in the optical domain did not 
provide the suitable resolution to detect variations in the spectrum of the order of the cavity free-spectral range 
(about 8 MHz). We thus implemented a zero-delay self-heterodyne  technique41, to map the optical spectrum of 
the pulses into the radio-frequency domain. The pulses retrieved from the resonator were modulated using a 
40 GHz Mach–Zehnder modulator to create sidebands at 16 GHz from the central pulse frequency and sent to 
an Electrical Spectrum Analyzer (ESA). The bottom row of Fig. 4 reports the radio-frequency spectra, given by 
the convolution of the beating lines acquired with the ESA and centered at the modulation frequency.

Methods for the numerical simulations. The simulations were performed using the tool VPItransmis-
sionMaker Optical Systems of the software VPIphotonics Design Suite whose numerical solver is based on a 
full-wave analysis. We reproduced the setup in the graphical environment using built-in blocks with customized 
parameters.

Data availability
The data that support the findings of this study are available from the corresponding authors on reasonable 
request.
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