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Unconventional time-bandwidth performance of resonant cavities with nonreciprocal coupling
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The time-bandwidth limit is a mathematical tenet that affects all reciprocal resonators, stating that the product
of the spectral bandwidth that can couple into a resonant system and its characteristic energy decay time is
always equal to 1. Here, we develop an analytical and numerical model to show that introducing nonreciprocal
coupling to a generalized resonator changes the power balance between the reflected and intracavity fields,
which consequently overcomes the time-bandwidth limit of the resonant system. By performing a full evaluation
of the time-bandwidth product (TBP) of the modeled resonator, we show that it represents a measure of the
increased delay imparted to a light wave, with respect to what the bandwidth of the reciprocal resonant structure
would allow to the same amount of in-coupled power. No longer restricted to the value 1, we show that the
TBP can instead be used as a figure of merit of the improvement in intracavity power enhancement due to the
nonreciprocal coupling.
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I. INTRODUCTION

The capability to slow down or trap light without imposing
an excessive distortion to the signal is a key tool of many
research areas such as optical communications [1,2], quantum
information processing [3], metamaterials [4], and photo-
voltaics [5–7]. In particular, it is of fundamental importance
in all the applications requiring optical signal processing or
light storage [8–14]. Thus far, owing to the progress attained
in the development of slow light devices, new frontiers of
light propagation have been achieved, in which light can be
dramatically slowed [15], captured and then released at a later
time [16–18], or even stopped altogether [19–21]. Generally,
what is required from the practical point of view is the ability
to impart a delay to a signal that is independent of the signal’s
bandwidth. For instance, in wavelength division multiplexed
(WDM) multichannel systems, storage devices and delay lines
are used at the receiver end to store high-rate data packets as
they are read out at a slower rate or for queuing while the
transmitter awaits access to the network [22,23].

In the last two decades, different implementations of res-
onant structures have been explored for the realization of
delay lines and storage devices [24–31], since they offer a
long effective delay at small footprints. Resonant cavities are
also widely used in nonlinear optics applications, such as
frequency comb and Kerr soliton generation [32,33], where
the intracavity power enhancement helps to reduce the in-
put power required to induce nonlinear effects. As is well

*camille.bres@epfl.ch

known, reducing the cavity bandwidth is a way to increase
the interaction time, as well as the power enhancement factor.
However, this leads to a constraint that unavoidably imposes a
trade-off between the delay time achievable and the width of
the operational spectral bandwidth [34–36]. In mathematical
terms, this trade-off is described by the time-bandwidth limit,
a fundamental rule that arises from Fourier-reciprocity con-
siderations, which dictates that the time-bandwidth product
(TBP) must be �ωτ = 1, with �ω the system bandwidth and
τ the energy decay time [37–39]. Both high finesse and losses
limit the storage capacity of microresonator-based devices
[40]. Precisely the same issue limits slow light devices, which
are equivalently limited by large group velocity dispersion and
losses [8,41].

Recently, a proposal [42] indicated that breaking Lorentz
reciprocity can overcome the time-bandwidth limit in a res-
onant system. Following this idea, we have experimentally
demonstrated [43] a fully nonreciprocal cavity with TBP ex-
ceeding the “fundamental” limit by a factor of 30 and limited
only by intrinsic losses. We also proposed that the concept of
the bandwidth that the resonator can “accept” (the acceptance
bandwidth �ωacc) can be different from what is considered
the cavity bandwidth �ωcav, which is simply the inverse of
the characteristic decay time (τ ).

Here, we present a generalized theoretical model of a res-
onant cavity having a nonreciprocal coupling element. We
analytically derive the frequency response of the reflected
and intracavity fields, their associated powers, and the TBP
of the system as a function of the degree of nonreciprocity,
i.e., the difference between the in-coupling and out-coupling
energy rate. We numerically validate this model simulating
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FIG. 1. Layout of a Gires-Tournois resonator with a nonrecip-
rocal front mirror, whose transmission coefficients depend on the
direction of wave propagation, and a fully reflective rear mirror.

a cavity where nonreciprocity is obtained by breaking its
time invariance [44], as it provides a direct way to imple-
ment this device using off-the-shelf telecom components [43].
Our results show that resonant systems with a nonreciprocal
coupling can provide a longer delay or storage time and a sig-
nificant improvement of the intracavity power enhancement,
with respect to their reciprocal counterpart, which is strongly
desirable in all the applications that demand high efficiency
in nonlinear processes. Moreover, we demonstrate that such
improvement of intracavity power enhancement is nothing but
the TBP of the system, quantitatively linking the degree of
nonreciprocity of a resonator to a figure of merit for nonlinear
optical processes.

II. THEORETICAL MODEL

A. Resonant system with nonreciprocal coupling

To analyze a resonant system with nonreciprocal coupling,
we consider a Gires-Tournois resonator [45,46]. The back
mirror (M2) is fully reflective, while the front mirror (M1)
is characterized by the following generic scattering matrix:

SM1 =
[

t12 r21

r12 t21

]
, (1)

where t12 (t21) and r12(r21) are the complex transmission
and reflection coefficients, respectively, of a wave incident
from outside (inside) the resonator. A schematic illustration
of such resonant system is shown in Fig. 1, where A, Ain,
and AR represent the complex amplitudes of the intracavity,
and the incoming and the (total) reflected wave, respectively.
In this system the front mirror constitutes the only physi-
cal port. Therefore, the total in- and out-coupling radiative
energy rates, ρin and ρout, respectively, are given by ρin =
|t12|2/TRT and ρout = |t21|2/TRT, with TRT being the cavity
round-trip time, while ρ0 is the intrinsic, or nonradiative,
energy decay rate. A nonreciprocal coupling implies that ρin

and ρout are different due to a nonreciprocal transmittance
of the front mirror (|t12|2 �= |t21|2) [43]. Consequently, the
difference |t12|2 − |t21|2 can be seen as a measure of the de-
gree of nonreciprocity of the system. Note that the analytical
model aims at studying the implication of decoupling input

and output energy rates in a resonant system irrespective to
the mechanism used to induce the nonreciprocal coupling,
which, in any case, must ensure the conservation of energy
[47–50]. In particular, the model does not presume how the
scattering matrix with such characteristics is generated; thus
the origin of the nonreciprocity (e.g., external magnetic field
bias, temporal variance, nonlinearity, etc.) [47,51] does not
have any impact on the TBP and the power balance of the
system: As long as the system has such scattering matrix, it
can exhibit nonreciprocal coupling. In the following sections,
we show that temporal variance is one way to reach this state,
but other mechanisms, such as external magnetic field bias or
nonlinearity, could also lead to the same outcome. Moreover,
although, for the sake of simplicity, we are considering a
one-port system, the model can be generalized for multiport
systems just by taking into account the in- and out-coupling
energy rates of the other ports.

B. Derivation of the frequency response

To characterize the frequency response of the system, we
use the formalism of the coupling of modes in space also
known as power coupling theory (PCT) [37,46,52]. While the
temporal coupled mode theory (TCMT) [37,53–56] can also
be used to describe the spectral distribution of a resonant mode
in an optical cavity, even in the context of nonreciprocity
[57,58], the equations on which it is based can approximate
the spectral response of a resonator only under the assumption
of weak coupling. By using the PCT we therefore carry out an
analysis unconstrained by coupling strength assumptions and
that can also consider multiple resonant mode profiles. An-
other distinction is that PCT gives the frequency response of
the resonator, which has the shape of an Airy function, while
the TCMT approximates the resonant system as a Lorentz
oscillator characterized by a single longitudinal mode [59].

The spectral distribution of the intracavity (A) and re-
flected (AR) fields can be expressed as follows (details in
Appendix A):

A(ω) =
√

ρinTRT
√

ad

1 − exp [ln(|r21|) − (ρ0/2 + j�ω)TRT]
Ain(ω), (2)

AR(ω)

=
{

r12+
√

ρinρoutTRTad exp
[− j

(
�ωTRT − φr

21

)]
1 − exp [ln(|r21|) − (ρ0/2 + j�ω)TRT]

}
Ain(ω),

(3)

where φr
21 is the phase of r21, ad is the field inner circulation

factor that accounts for the nonradiative loss of the resonator,
�ω = ω − ω0 is the frequency detuning from resonance, and
the field of the incident wave Ain(ω) is assumed to have a flat
frequency distribution over one free spectral range (FSR =
1/TRT).

C. Analysis of the power balance of the resonant system

To study the effect of nonreciprocity on the power balance
of the resonator, we calculate the total reflected and intracavity
powers encased in one FSR. When normalized to the input
power and the FSR, expressed in angular frequency (�ωFSR =
2π/TRT), they are given by the following expressions,
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FIG. 2. Graphs in color scale of the total intracavity (top row) and reflected (bottom row) power encased in one FSR, normalized to the
total input power and �ωFSR, plotted as a function of the in-coupling and out-coupling transmittances. The values are related to a resonator
with (a) 0.1, (b) 1, and (c) 2 dB of internal loss, while the red dashed line indicates the points relative to the reciprocal coupling.

respectively:

GR = 1

�ωFSR

∫
FSR

∣∣∣∣ AR(ω)

Ain(ω)

∣∣∣∣
2

dω

Gcav = 1

�ωFSR

∫
FSR

∣∣∣∣ A(ω)

Ain(ω)

∣∣∣∣
2

dω, (4)

where the argument of the integral of Gcav is nothing else but
the intracavity power enhancement. Therefore, Gcav represents
the total power enhancement attained over one FSR.

First, we study the problem focusing on a purely theoretical
analysis, plotting the values of Gcav and GR, as a function of
the in- and out-coupling transmittance. Figure 2(a) shows the
case with a2

d = 0.1 dB, TRT = 100 ns, and the phases of r12

and r21 both set to 0. The red dashed lines indicate the states
where coupling is reciprocal (|t12|2 = |t21|2). The maximum
value of Gcav occurs when |t12|2 = 1 and |t21|2 = 0, i.e., when
there is total inward transmission and zero outward transmis-
sion through the front mirror. Conversely, when |t12|2 = 0,
nothing enters in the resonators and, as expected, Gcav = 0.
More importantly, we note that, owing to the nonreciprocal
coupling, the intracavity power can be enhanced by more than
a factor of 40 with respect to the reciprocal case (red dashed
line). The graph of GR shows an inverse behavior, with a peak
value occurring at |t12|2 = 0, and a minimum when |t12|2 = 1
and |t21|2 = 0. The graphs in Figs. 2(b) and 2(c) are for 1
and 2 dB of internal (round-trip) loss, respectively. We can
see that Gcav decreases with increasing internal loss for all
combinations of |t12|2 and |t21|2, while the maximum value of

GR does not change because, in this case, the contribution of
the out-coupled power, that is affected by the internal loss, is
missing. We also note that GR exhibits smoother variations as
a function of |t21|2 when the contribution of the internal loss
increases.

To validate the theoretical analysis, we compare these
results with those obtained from simulations based on a full-
wave analysis conducted using the software VPIPHOTONICS

[60]. Although the model does not depend on the mechanism
used to induce the nonreciprocal coupling, we implement the
Gires-Tournois resonator in the form of a figure-nine cavity
where the nonreciprocal front mirror is simulated by a time-
modulated Sagnac interferometer, as it has been proven to
be experimentally implemented with standard telecommuni-
cation components [43]. Details on the numerical setup used
in the simulations can be found in Appendix B. Through this
numerical model, we could arbitrarily and independently vary
the in- and out-coupling transmission coefficients of the front
mirror. However, for the sake of clarity, we analyze the system
for two different cases. As the degree of nonreciprocity is
equivalent to the minimum distance from the line of reci-
procity for any point in the parameter space considered in
Fig. 2, in case (A) we evaluate the spectral response of the
system for different degrees of nonreciprocity by considering
points meeting the conditions |t12|2 + |t21|2 = 1 and |t12|2 �
|t21|2; in case (B), aiming at investigating on the behavior of
the resonator in the situation where the light is totally trapped
in the cavity, we perform the analysis for |t21|2 = 0 while
varying |t12|2. In both cases a2

d and TRT are set to 0.1 dB and
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FIG. 3. Left-hand side: comparison of the values obtained from the simulations with those retrieved from Eq. (4) of the total power
enhancement and reflected power, encased in one FSR and normalized to it. The graphs are related to the first (a) and the second (b) case
of study and plotted as a function of the degree of nonreciprocity and the in-coupling transmittance, respectively. Right-hand side: spectral
distribution over one FSR of the reflected power and the intracavity power enhancement. The curves are related to a degree of nonreciprocity
equal to 0.4 (violet solid panel) and 1 (green dotted-dashed panel), and to the case with |t21|2 = 0 and |t12|2 = 0.8 (yellow dashed panel).

100 ns, respectively, while the phases of r12 and r21, both
set to π /2, were retrieved by deriving the equations for the
wave interference at the coupling element of the simulating
setup [see Eqs. (B5) and (B7) in Appendix B]. The results
for case (A) are shown in Fig. 3(a). We can see that Gcav and
GR have roughly the same value in the reciprocal case, given
that the internal loss is small. However, by decoupling |t12|2
and |t21|2, Gcav exponentially grows with increasing degree of
nonreciprocity, taking its maximum value at the highest de-
gree of nonreciprocity, while GR decreases. A rather different
scenario occurs in case (B), described in Fig. 3(b), where both
Gcav and GR vary linearly with |t12|2. In this case, since |t21|2
is set to 0, GR is a linear function of the reflection coefficient
of the front mirror and no cavity resonant mode is coupled
out, while the growth of Gcav is due only to the in-coupling
energy rate ρin, as predicted by Eqs. (2) and (3) respectively. In
fact, in the extreme case where also |t12|2 = 0, then Gcav = 0
and GR has a finite value since the incoming power is totally

reflected by the front mirror. The right-hand side of the figure
shows the spectral distribution over one FSR of the intracav-
ity power enhancement and the normalized reflected power
related to some values of Figs. 3(a) and 3(b). As expected,
the bandwidth of the intracavity spectrum, which is given

by �ω = (4/TRT)sin−1{[1 − |r21|a−1/2
d ]/[2(|r21|a−1/2

d )
−1/2

]},
gets narrower with increasing degree of nonreciprocity since
|t21|2 (which is equal to 1 − |r21|2) decreases. We also note
that the zero out-coupling transmission (|t21|2 = 0, green
dotted-dashed and yellow dashed panel) leads to a reflection
spectrum that is no longer dependent on the frequency, since
it includes only the contribution of the power reflected by
the front mirror. Particularly, in the specific case of fully
coupled input power (|t12|2 = 1, i.e., maximum degree of
nonreciprocity), the reflected power is null, meaning that the
light is completely trapped inside the resonator, and dissipated
via the internal loss. Importantly, in both cases the numerical
results are in good agreement with Eqs. (2)–(4). Therefore,
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FIG. 4. Derivation of the TBP of a resonant system starting from its loading and decay processes. The TBP is given by the ratio between
the acceptance and the cavity bandwidth which are the FWHM of the Lorentzian function associated, through the Fourier transform, to the
loading and decay curve, respectively.

the decoupling of the in- and out-coupling energy rates in a
resonant system, a consequence of the induced nonreciproc-
ity, can dramatically affect the balance between the reflected
and intracavity power and significantly improve the power
enhancement provided by the resonator.

III. EVALUATION OF THE TIME-BANDWIDTH
PERFORMANCE

Following the above analysis, we evaluate the TBP for dif-
ferent degrees of nonreciprocity. We recall that the resonator
losses, which include both the radiative and nonradiative out-
coupling energy rates, are quantified by the linewidth of the
Lorentzian profile of the single resonant mode and not by the
full width at half maximum (FWHM) of the Airy function
characteristic of the resonator spectral response [59]. This is
a rule that is valid regardless of the strength of the coupling.
Therefore, to properly derive the TBP, we use the TCMT to
retrieve the Lorentzian mode profile associated to the loading
and decay processes of the resonator. As explained in [43],
analogously to the decay process of the energy stored in
the resonator, which varies in time as e−(ρout+ρ0 )t , and sets
the bandwidth of the resonator to �ωcav = ρout + ρ0, we can
define a loading process, where the energy builds up in the
resonator as e+(ρin+ρ0 )t as the time is running backward [53].
Then, the loading rate (ρin + ρ0) represents the acceptance
bandwidth of the resonator (�ωacc = ρin + ρ0). This concept
is illustrated in Fig. 4, where both the loading and decay pro-
cesses, and their associated bandwidths, are used to calculate
the TBP of the system as �ωacc/�ωcav [43].

We calculate the TBP of the resonator in the case of recip-
rocal and nonreciprocal coupling, and we plot the values in
Fig. 5(a) as a function of |t12|2. For the nonreciprocal case,
we plot three curves corresponding to three values of the
absorption loss a2

d : 0 (lossless), 0.1, and 0.5 dB, while |t21|2 is
set to 0.1. Owing to the decoupling of the in- and out-coupling
energy rates, the TBP linearly increases with the increasing

of |t12|2 in the case of nonreciprocal coupling, while it is
always equal to 1 in the case of reciprocal coupling. A similar
scenario (for a time-invariant structure) was introduced in
[42].

In Fig. 5(b) the TBP of a resonator with a2
d = 0.1 dB is

plotted for all the combinations of |t12|2 and |t21|2, with the
red dashed line indicating reciprocal coupling (|t12|2 = |t21|2).
The highest TBP occurs at the maximum degree of nonre-
ciprocity, while it becomes smaller than 1 when the degree
of nonreciprocity is negative (|t12|2 < |t21|2).

It is interesting to note that the values of the TBP follow
those of Gcav in Fig. 3(a) showing a strict correlation between
the TBP and the total power enhancement attained over one
FSR. In fact, both show their peak at the maximum degree
of nonreciprocity. However, while Gcav is always null when
|t12|2 = 0, the TBP is greater than zero (and smaller than 1)
because ρ0 �= 0, and decreases with increasing |t21|2 along the
line |t12|2 = 0, reaching its minimum at |t21|2 = 1.

The benefit of the nonreciprocal coupling in a resonant
system shows up more clearly by evaluating the total power
enhancement in the nonreciprocal case with respect to the
power enhancement achievable in the reciprocal case for the
same amount of in-coupled power. This can be illustrated by
plotting GNR

cav/GR
cav, where GNR

cav is Gcav for the nonreciprocal
system calculated with ρin > ρout, and GR

cav for the reciprocal
one. The results, obtained from the simulations, are plot-
ted in Fig. 6 as a function of the degree of nonreciprocity
[with the same conditions of Case (A) in Fig. 3] and com-
pared with the corresponding values of the TBP. Clearly, the
ratio GNR

cav/GR
cav increases exponentially with the degree of

nonreciprocity, proving that by tailoring the decoupling of
ρin and ρout, the intracavity power can be enhanced much
more than what could be done with a reciprocal resonator.
We also note that the values of the TBP are in good agree-
ment with those of GNR

cav/GR
cav, meaning that it can be used

as a figure of merit to indicate the gain of total power en-
hancement due to nonreciprocal coupling, with respect to
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FIG. 5. (a) Comparison between the TBP of a reciprocal and a nonreciprocal resonator plotted as a function of the in-coupling transmit-
tance. The curves of the nonreciprocal cases are relative to resonators with different absorption losses. (b) Graph of the TBP in color scale as a
function of the in- and out-coupling transmittance for a resonator with 0.1 dB of internal loss. The red dashed line indicates the values relative
to the reciprocal coupling (i.e., TBP = 1), which corresponds to the time-bandwidth limit.

a reciprocal resonator, for an equal amount of in-coupled
power.

As a conclusive remark, let us consider the general def-
inition of the TBP (TBP = �ωacc/�ωcav) [43]. It can be
rewritten as a ratio between the finesse related to �ωcav and
�ωacc, which we name cavity and acceptance Lorentzian fi-
nesse, Fcav and Facc, respectively:

TBP = �ωacc

�ωFSR

�ωFSR

�ωcav
= Fcav

Facc
. (5)

The physical meaning of this expression can be found
by considering that the cavity finesse calculated using the
Lorentzian linewidth represents the number of round trips
(times 2π ) before the energy stored in the resonator decays to
1/e of its original value [37]. Applying this definition also to
the loading process, we can say that the Facc is the number of

FIG. 6. Comparison between the values of the ratio GNR
cav/GR

cav

calculated using the values of Gcav obtained from the simulations,
and the TBP as a function of the degree of nonreciprocity of the
system.

round trips the intracavity energy takes to reach its final value,
starting from 1/e of this value. Therefore, considering a certain
amount of energy stored inside a resonator with ρin > ρout,
a TBP > 1 implies that the decay time τD = 1/ρout + 1/ρ0

experienced by this energy is longer than that provided by
a reciprocal resonator (TBP = 1) by an amount equal to the
ratio Fcav/Facc.

IV. CONCLUSION

In conclusion, we investigated the implications of the
nonreciprocal energy coupling on the TBP and the power
balance of a generic resonant cavity. The results obtained
by performing an analytical and numerical analysis of the
frequency response of the modeled resonant system show that
the decoupling of the in- and out-coupling energy rates, as a
consequence of the induced nonreciprocity, can significantly
improve the power enhancement provided by the resonator
compared to the reciprocal case. By evaluating the TBP of
such a system, we show that it is greater (smaller) than 1
when ρin > ρout (ρin < ρout) and takes its highest value at the
maximum degree of nonreciprocity. We provide an interpre-
tation of the TBP as a measure of the increased delay time
imparted to a light wave, with respect to what the bandwidth
of the resonant structure would allow for the same amount
of in-coupled power. This is valid for every finite value of
the acceptance and cavity Lorentzian finesse and fits with
the time-bandwidth limit (�ωτ = 1) which, instead, simply
links the cavity bandwidth to the photon lifetime, only when
the resonator is reciprocal. Moreover, by comparing the to-
tal power enhancement in the reciprocal and nonreciprocal
case, we proved that the TBP is a figure of merit that char-
acterizes the gain of total power enhancement attained over
one FSR through nonreciprocal coupling compared to the
reciprocal case, considering the same amount of in-coupled
power. Understanding these fundamental relationships for
general resonators will allow the development of novel op-
tical devices, using nonreciprocity to further increase field
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enhancements and hence the efficiency of nonlinear optical
interactions.
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APPENDIX A: DERIVATION OF EQS. (2) AND (3)

A general expression of the intracavity and reflected spec-
tra of a Gires-Tournois resonator can be derived using the
circulating field approach [46]:

A = t12
√

ad

1 − |r21|ad e− jφRT
Ain, (A1)

AR =
[

r12 + t12t21ad e− j(φRT−φr
21 )

1 − |t21|ad e− jφRT

]
Ain, (A2)

where ad = e−αd LRT is the field inner circulation factor that
accounts for the nonradiative loss of the resonator, Ain is the
amplitude of the input signal, and φRT is the total round-trip
phase delay, which is given by the sum of the cavity round-trip
phase delay φd = β(2LRT) and the phase of r21 (φr

21). In these
latter expressions, LRT, αd , and β are the cavity length, the
intracavity power attenuation coefficient, and the propagation
constant, respectively. Given that φRT = 2mπ + �φRT, where
�φRT is the phase detuning from resonance, the exponential
term in Eqs. (A1) and (A2) can be written as e− j�ωTRT , where
�ω = ω − ω0, and TRT = 2LRT/vg is the cavity round-trip
time, with vg the group velocity. Also, defining the intrinsic
energy decay rate ρ0 = αdvg, we can rewrite the inner circu-
lation factor in the denominator of Eqs. (A1) and (A2) as ad =
e−(ρ0TRT )/2. Using these relations and, recalling that the in- and
out-coupling transmittances are related to their corresponding
energy rates through ρin = |t12|2/TRT and ρout = |t21|2/TRT

[37], we can express the intracavity and reflected spectra as
a function of ρin, ρout, ρ0, and �ω:

A(ω) =
√

ρinTRT
√

ad

1 − exp [ln(|r21|) − (ρ0/2 + j�ω)TRT]
Ain(ω),

(A3)

AR(ω)

=
[

r12+
√

ρinρoutTRTad exp
[− j

(
�ωTRT − φr

21

)]
1 − exp [ln(|r21|) − (ρ0/2 + j�ω)TRT]

]
Ain(ω).

(A4)

APPENDIX B: DESCRIPTION OF THE SETUP USED
FOR THE SIMULATIONS

The Gires-Tournois resonator can be experimentally im-
plemented in the form of a figure-nine cavity, as we have
shown in [43], where the nonreciprocal front mirror is realized
by the time-modulated Sagnac interferometer. We therefore
build the numerical model of the Gires-Tournois resonator
using the same layout used in [43]. To be able to explore
the full nonreciprocal scenario consisting of an in-coupling

transmittance spanning from 0 to 1, we use a nonreciprocal
coupler, instead of a standard directional coupler (see Fig. 7).
In fact, as explained in [43], a standard directional coupler
can lead, in the presence of phase modulation, only to the
maximum in-coupling transmittance (|t12|2 = 1). Therefore,
as we will see, a nonreciprocity of the coupling coefficients
of the coupler is required to unlock all the values of the
in-coupling transmittance between 0 and 1.

In order to understand how the nonreciprocal coupling is
simulated by the time-modulated Sagnac interferometer, we
need to examine the equations that govern the wave interfer-
ence at the coupler [43,61].

Let us consider an optical pulse incident on the R port of
the coupler, whose pulse duration is smaller than the cavity
round-trip time, TRT. Specifically, the pulse length is shorter
than the distance of the phase modulator from the loop mid-
point. This enables the imparting of the phase modulation only
to one of the two counterpropagating pulses.

The nonreciprocity of the coupler imposes that the cross
and straight coupling coefficients depend on the direction of
the light wave. In particular, κa and τa are the cross and
straight coupling coefficients, respectively, for the wave prop-
agating from the R or T port toward the inside of the loop,
while κb and τb are the cross and straight coupling coefficients
respectively for the wave going from inside the loop toward
the R or T port. Explicitly, this means that for the left-hand
schematic of Fig. 7, κa is the coupling efficient from R to 2
and T to 1, τa is for R to 1 and T to 2, κb is for 2 to R and 1 to
T, and τb is for 1 to R and 2 to T. Since the input signal consists
of a single pulse, it does not superimpose at the coupler with
any other pulse (the same result would be obtained if the
input signal was given by a pulse train with a period longer
than the cavity RT time and not a multiple of it); the transfer
characteristic of the coupler can be described by two distinct
scattering matrices, one for each direction of propagation of
the wave. We therefore can define SCa, the scattering matrix
for the wave propagation toward the inside of the loop, and
SCb for the wave coming from within the loop:

SCa =
[

τa − jκa

− jκa τa

]
, SCb =

[
τb − jκb

− jκb τb

]
. (B1)

A device with such characteristic is included in the VPIPHO-
TONICS software library as a generic coupler in which it is
possible to arbitrarily set the scattering parameters. How-
ever, the same behavior can be performed in practice by a
time-variant tunable directional coupler made of a four-port
Mach-Zehnder interferometer [31].

Passing through the coupler the incoming pulse is split
into two pulses whose complex amplitudes can be written as
follows:

A1a = τaAin, A2a = − jκaAin, (B2)

where Ain is the original complex amplitude of the pulse.
If there is no phase modulation the complex amplitudes of
the two counterpropagating waves, the clockwise (CW) and
counter-clockwise (CCW), are simply

Acw = τaAine− jφp, Accw = − jκaAine− jφp, (B3)

where φp is the phase delay acquired by the optical pulse
through the fiber loop. Then, by denoting AT and AR the
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FIG. 7. Schematic representation of the setup used in VPIPHOTONICS for the numerical simulations. The phase modulation in combination
with the nonreciprocal coupler both integrated in a Sagnac interferometer ensures a total control of the transmission coefficient of the fiber
loop, allowing us to emulate the nonreciprocal front mirror of the Gires-Tournois resonator.

complex amplitudes of the transmitted and reflected portions
of the pulse, respectively, the field transmission and reflection
coefficients t0 and r0, respectively, are easily found:

AT = τbAcw − jκbAccw ⇒ t0 = AT

Ain
= (τaτb − κaκb)e− jφp,

(B4)

AR = − jκbAcw + τbAccw ⇒ r0

= AR

Ain
= − j(τaκb + κaτb)e− jφp, (B5)

where the subscript 0 indicates the absence of the phase mod-
ulation.

Conversely, if the phase modulator is electrically gated to
shift by π the phase of one of the two counterpropagating

pulses only, say the CCW pulse, the complex amplitude Accw

in Eq. (B3) becomes

Accw = − jκaAine− j(φp+π ) = jκaAine− jφp, (B6)

and, therefore, the complex transmission and reflection co-
efficients, tπ and rπ , respectively, exhibited by the Sagnac
interferometer will be

tπ = (τaτb + κaκb)e− jφp, rπ = − j(τaκb − κaτb)e− jφp,

(B7)

where the subscript π indicates the presence of the π phase
shift imparted by the phase modulator. In the above expres-
sions, the value of φp can be arbitrarily set to 0 without loss of
generality.

When the electrical signal is applied at the phase modu-
lator at a time t1, and for a duration t1 � t < t2, the Sagnac

FIG. 8. Schematic representation of the Gires-Tournois resonator in the form of a figure-nine cavity for (a) t1 � t < t2 and for (b) t � t2.
PM: phase modulator; NRC: nonreciprocal coupler; RE: reflective element.
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interferometer exhibits a transmission coefficient t(t1) = tπ ,
while for the rest of the time (t � t2), the transmission coeffi-
cient is t(t2) = t0. Therefore, the localized time-varying phase
modulation, in combination with the nonreciprocal coupler,
allows us to arbitrarily vary in time the power transmission
coefficient t of the Sagnac interferometer. In fact, we can
obtain any value of t simply by acting on the electrical gating
signal and by setting the proper parameters of the scattering
matrices of the nonreciprocal coupler. The final result is two
effectively different coupling energy rates of the figure-nine
resonator, one for t1 � t < t2 and one for t � t2 which are
given, respectively, by

ρ(t1) = |tπ |2
TRT

, ρ(t2) = |t0|2
TRT

. (B8)

If the incoming optical pulse is synchronized with the
electric signal, it is coupled in the resonator through the
Sagnac interferometer with a transmission coefficient tπ , as
is depicted in Fig. 8(a). However, while it resonates within
the cavity, it is coupled out with a transmission coefficient
t0 [Fig. 8(b)]. Doing so, although the Sagnac interferometer
exhibits a unique transmission coefficient at any given time,
the incoming pulse experiences a transmission coefficient that
is different from the one experienced by the intracavity pulse
(tπ �= t0). We can therefore identify tπ and t0 with the trans-
mission coefficients t12 and t21, respectively, and ρ(t1)[ρ(t2)]
with the in-coupling (out-coupling) energy rate ρin (ρout) of
the Gires-Tournois resonator. Analogously, we identify rπ and
r0 with the reflection coefficient r12 and r21, respectively.

In such a system, the acceptance bandwidth corresponds
to the bandwidth that the figure-nine resonator exhibits in the
time window between t1 and t2, that is, �ωacc = ρ(t1) + ρ0,
while the cavity bandwidth is the bandwidth that the system
exhibits when there is no signal applied to the phase modu-
lator (i.e., for t � t2), which is given by �ωcav = ρ(t2) + ρ0.
Table I shows a summary of the parameters of the VPIPHO-

TABLE I. Table summarizing the correspondences between the
parameters of the VPIPHOTONICS simulation figure-nine-based setup
and those of the Gires-Tournois resonator model.

VPIPHOTONICS simulation setup GT resonator model

tπ = (τaτb + κaκb)e− jφp t12

t0 = (τaτb − κaκb)e− jφp t21

rπ = − j(τaκb − κaτb)e− jφp r12

r0 = − j(τaκb + κaτb)e− jφp r21

ρ(t1) = |tπ |2/TRT ρin

ρ(t2) = |t0|2/TRT ρout

TONICS simulation setup, based on the figure-nine cavity
implementation, and their corresponding parameters of the
Gires-Tournois resonator model.

The choice of using a nonreciprocal coupler, instead of
a standard directional coupler, can be ultimately clarified by
calculating the expressions of tπ in the case of a directional
coupler with cross and straight coupling coefficients, κ and
τ , respectively. Equation (B7) would then get the following
form:

tπ = (τ 2 + κ2)e− jφp = 1, (B9)

where we have assumed that the coupler is ideal, i.e., τ 2 +
κ2 = 1 and that φp = 0. Therefore, in this case, it would not
be possible to obtain an in-coupling transmittance different
from 1, thus limiting our parameter space. However, the non-
reciprocal coupling is still ensured by the time-variant phase
modulation, since t0 in this case would be given by

t0 = (τ 2 − κ2)e− jφp . (B10)

In the case of a 50/50 coupler Eq. (B10) gives t0 = 0,
which, together with Eq. (B9), represents the nonreciprocal
coupling scenario explored experimentally in [43].
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