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ABSTRACT

Topologically protected transport has recently emerged as an effective means to address a recurring problem hampering the field of slow
light for the past two decades: its keen sensitivity to disorders and structural imperfections. With it, there has been renewed interest in efforts
to overcome the delay-time-bandwidth limitation usually characterizing slow-light devices, on occasion thought to be a fundamental limit.
What exactly is this limit, and what does it imply? Can it be overcome? If yes, how could topological slow light help, and in what systems?
What applications might be expected by overcoming the limit? Our Perspective here attempts addressing these and other related questions
while pointing to important new functionalities both for classical and quantum devices that overcoming the limit can enable.
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INTRODUCTION

Resonances and resonant cavity devices are ubiquitous in wave
physics and engineering—from nanophotonics, metamaterials, and Si
photonics to atomic and molecular optical physics and condensed
matter.1–7 Well-known types of resonances range from standard reso-
nances, such as Lorentzian, Fano, Mie, Raman, and so forth, to more
exotic ones such as embedded eigenstates in the continuum or parity-
time-symmetric resonances. Devices based on resonances (resonators)
are pervasive components of virtually all mainstream modern technol-
ogies, from lasers, sensors, filters, and antennas to modulators, detec-
tors, spectrometers, and integrated electronic or photonic circuits. In
the nascent field of “metamaterials,” for instance, the very first such a
(meta)material was an array of split-ring resonators.2,8

Despite this, quite literally the totality of present-day resonant
devices and cavities are well-understood to be time-bandwidth (T-B)
limited9–13—that is, for a given (fixed) footprint, the wave-storage time
Dt of any such devices, be it resonant or waveguiding, is inversely pro-
portional to the device’s bandwidth, Dx, with the insurmountable
product of the two usually referred to as the T-B limit9,10 (see Fig. 1
and the section entitled as “What is the time-bandwidth limit?”). This
inverse proportionality relation between Dt and Dx has adverse con-
sequences for the performance of all such devices: We may spend
years, or even decades,14,15 to optimize their wave-storage (low loss)

performance, i.e., increase “Dt,” typically in order to enhance wave–
mater interactions for a sought-after functionality, but that automati-
cally leads—always—to a correspondingly narrower device bandwidth
Dx—an undesirable characteristic for a range of key applications
requiring the broadband passive performance, particularly in commu-
nication systems and integrated nanoelectronics and nanophotonics.
Furthermore, the narrow-bandwidth characteristics of low-loss reso-
nant devices directly imply that these (passive) systems are corre-
spondingly slow, too, since the higher the Q-factor of a system (i.e., the
narrower the bandwidth) the longer it takes to respond to the external
stimuli2,9—making them unsuitable for applications requiring
“ultrafast” device-accessing (in-coupling) and -exiting (outcoupling)
time scales.

This “fundamental” T-B limit constrains not only resonant devices
but also waveguiding devices of fixed length9–13—e.g., it is perhaps the
most well-known limitation of present-day “slow light” schemes. Thus,
virtually all devices, throughout wave physics and engineering, be them
resonant or waveguiding, are T-B limited—since any device of fixed
footprint either “stores” a wave for some time, i.e., it functions as a cavity
or propagates a wave over some distance, i.e., it functions as a wave-
guide. Furthermore, cutting-edge systems, such as light-(nano)focusing
nanoscopes,17 and chiral sensing schemes18–20 also fall victims of this
limit. Indeed, as explained in more detail in Refs. 17 and 21, the T-B
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limitation is responsible for the very low throughput efficiencies and low
speeds of, e.g., near-field scanning optical microscopes (NSOMs)—the
incumbent technology for bringing light to the nanoscale—and for simi-
lar limitations in a whole range of key nanoscale technologies.21

Likewise, the sensitivity limits of commercially available optical polarim-
eters, circular dichroism, and optical rotation modules are currently lim-
ited by the insufficiently high intra-cavity fields and light powers,
corresponding to analyte concentration detection limits at the (sub)-
micromolar levels, thereby constraining the extension of polarimetry to
a wide range of important research and industrial applications requiring
improved sensitivity levels (e.g., sub-nM levels).18–20

With these general remarks in mind, in the following three
and in the last two sections, we outline in more detail how exactly
this limit arises, why overcoming it with topological slow/stopped
light and nonreciprocal cavities is, both, feasible and important, the
meaning of “nonreciprocal cavities” within the present context, and
the new functionalities and applications that could be enabled by
overcoming the limit.

WHAT IS THE TIME-BANDWIDTH LIMIT?

Consider a resonant device storing (localizing) a wave of ampli-
tudeW inside it. The wave oscillates sinusoidally, say, with a frequency
x0 and decays with time owing to some loss mechanism(s) with a total
decay rate9,10,21,22 C, i.e., W tð Þ / cos x0tð Þ � e� 1=2ð ÞCt . Then, in the
resonance approximation and in the usual underdamped regime

ðC=2� x0), the energy spectral density E xð Þ ¼ F _Wh if gj j2 of
_W ðtÞ

� �
, where :h i indicates the operator extracting the envelope of its

arguments andF is the Fourier-transform operator, will be given by

E xð Þ ¼ 1

C=2ð Þ2 þ x2
: (1)

From the above relation, it can be seen that the (half-amplitude)
bandwidth of the resonant device is Dx ¼ C. In other words, the
product of the device’s storage time, Dt ¼ 1=C, with Dx, appears to
always, for any linear time-invariant (LTI) system, be equal to unity,
DtDx ¼ 1—a limit known as the “time-bandwidth (T-B) limit” of
resonant devices.

This limit is a completely general phenomenon, characterizing
the storage capacity of all linear, time-invariant, resonant, and wave-
guiding alike, devices—from photonics to acoustics, opto-mechanics,
atomic and molecular physics, as well as mechanical and structural
systems.9–13 It should not be confused with the mathematical time-
bandwidth limit, r2

t r
2
X � 1=4, where r2

t is the time variance of a signal
x(t) 2 L2(<) and r2

X its frequency variance, i.e., with the uncertainty
principle characterizing Fourier-integral pairs in signal analysis and
communication systems and which, among others, only has a lower
bound. Although both limits often bear the same name, the T-B limit
discussed here (which has an upper bound9–13) characterizes the stor-
age capacity of the devices themselves—not the mathematical Fourier
properties of the respective signals.

In addition to resonant devices, the physical T-B limit discussed
here also arises, albeit in a different form,9–13 in guiding structures of
fixed length, such as slow-light waveguides or bulk media (of fixed
wave-propagation length). Here, because there is propagation (unlike
resonant cavities), the role of group-velocity dispersion and attenua-
tion also need to be considered, and a number of works have eluci-
dated that a structure can decelerate a wave over only a finite
bandwidth Dx inversely proportional to the group index ng. Hence, a

FIG. 1. Physics and time-bandwidth characteristics of reciprocal and open nonreciprocal cavities. In a standard reciprocal cavity (upper left panel), the in- and outcoupling
radiative wave-energy rates (qin and qout) are equal, whereas in an open nonreciprocal cavity, it is qin� qout over a broad band Dx for an arbitrary incident pulse. Because
qout ! 0, the pulse stays trapped (localized) in the open nonreciprocal cavity for long times Dt, giving rise to DxDt products that can exceed all known forms of the time-
bandwidth limit. The bottom row shows the standard single-resonance temporal coupled-mode theory equation,3,16 describing accurately only reciprocal (ordinary) cavities,
where sout is the radiative-loss lifetime of a wave of amplitude a inside the cavity, and sþ is the incident power. Adapted from Ref. 9.
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structure of fixed length L cannot delay a wavepacket of bandwidth
larger than Dx by more than a time Dt � ngL/c, where c is the speed
of light in vacuum. In other words, the “delay-bandwidth product,”
DtDx, characterizing waveguiding structures has an upper limit.
Intuitively, this arises because in order to increase the delay Dt in a
guiding structure of a given (fixed) length, the group refractive index
vg ¼ dx/db, where b is the longitudinal propagation constant, needs
to decrease, i.e., the dispersion band needs to become “flatter”; there-
fore, the bandwidth Dx over which vg is defined has to decrease.
Careful analyses, incorporating the role of group-velocity dispersion
and attenuation, show that, in fact, in this case, for waveguides, Dt
becomes inversely proportional to a power9–13 of Dx—e.g., Dt
� Dx�a, a¼ 2, 3; an even stricter limitation.

In all cases, the T-B limit simply states that it is impossible to
store, “trap,” or buffer broadband waves for long times in any known
LTI devices of fixed size, throughout wave physics and engineering—a
major limitation, often argued to be fundamentally insurmountable.
One may also note here that unlike dissipative losses in plasmonic
structures, which are often thought to constitute a key issue in that
broad field, the T-B limit also concerns dielectric structures as well,
i.e., it is a broader and apparently more severe limitation.

WHY OVERCOMING THIS LIMIT IS IMPORTANT?

There are two main reasons for this. First, for waveguiding struc-
tures of fixed length, the product DtDx, being a unitless number, gives
the number of “bits” (wave pulses) that can be stored or buffered in
that structure, i.e., it is a direct figure-of-merit of the “capacity” or
buffering “memory” of that system9–13—the larger the product DtDx
becomes, the more bits of information we can temporarily be stored
(buffered) in the structure. It should here also be noted that one of the
key advantages of “slow light” is the fact that it allows for shorter

device length for a given functionality. Indeed, as it is well-known
(e.g., Refs. 3, 9, 11, and 12), a given change dn in the material refractive
index required for a specific functionality (e.g., in an interferometer)
corresponds to a shift in an electromagnetic band by a fixed amount
dx, because the frequency is kept constant by the choice of the operat-
ing wavelength. As a result, a larger group refractive index ng ¼ c/vg
¼ c/(dx/db), that is, a “slower” wave, requires a shorter device length
Lp ¼ p/db for a required phase shift (here, p). Hence, “slow” light is
usually exploited for reducing a device’s footprint.

Second, and perhaps more importantly for micro- and nano-
photonic applications, as has recently been shown,23 the product
DtDx is also a direct figure-of-merit of the enhancement (compared to
a T-B limited device) in wave power that a resonator or, waveguide of
fixed length, can accept—i.e., a large value of DtDx leads to a
correspondingly-higher wave power inside the resonant or waveguid-
ing system. This is particularly important for a host of applications
relying on strong wave-matter interactions, including efficient high-
harmonic generation, enhanced and faster (broadband) spontaneous
emission rates, sensing, strong wave-matter coupling, single- or few-
photon nonlinearities, and so forth. More examples of this are dis-
cussed later on, in the last two sections, in this Perspective.

WHAT IN THE PRESENT CONTEXT IS MEANT
BY A “NONRECIPROCAL OPEN CAVITY”?

A nonreciprocal cavity is a cavity for which, at steady state, the
rate of electromagnetic energy in-coupled to the cavity is larger, over a
broad range of frequencies, than the rate with which energy radiatively
out-couples from the cavity (cf. Figs. 1 and 2). In other words, without
the energy building up in the cavity (steady state), there is more wave-
energy injected into the cavity than wave-energy radiatively escaping
the cavity. This can, e.g., happen when a wave pulse enters a finite

FIG. 2. General schematic of a nonreciprocal cavity along with the main definitions used for the analysis of its time-bandwidth product and intra-cavity power.
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region of space (an open “hotspot” or an open cavity24) and is therein
completely trapped without the lightfield escaping the region radia-
tively. Such a configuration is often referred to as an “open” cavity,7,24

i.e., a cavity that does not feature (“hard”) material boundaries, and
inside which a pulse can enter even seamlessly with minimal back-
reflections (high in-coupling energy rate).

DOES THE INEQUALITY OF RATES VIOLATE ENERGY
EQUILIBRIUM?

The inequality of in-coupling and outcoupling energy rates over
a broad band in a nonreciprocal cavity might at first sight seem to vio-
late energy balance at equilibrium (steady state). Poynting’s theorem
stipulates that at the steady state the rate of energy coupled into a given
(finite) region of space must be exactly equal to the total (radiative
þ dissipative) rate of energy out-coupled from that region (cavity).
However, it is here to be pointed out that this equality concerns the
total rates: If all the wave energy couples to the cavity (large in-
coupling rate qin) and no wave energy radiatively out-couples from
the cavity (zero radiative outcoupling rate, qout! 0), then necessarily
all the in-coupled and trapped wave energy will be dissipated in that
finite spatial region, i.e., the total in-coupling energy rate will still be
exactly equal to the total outcoupling rate (radiative þ dissipative
¼ 0þ dissipative¼ dissipative only in this example).

Such a cavity, where all the wave energy couples inside it, without
reflection, and is eventually dissipated in the cavity, essentially behaves
as a perfect absorber—sometimes also termed, more exotically, as an
“optical black hole”25 because light cannot radiatively escape from it.
Note that the inequality in the radiative-only part of the rates is
required, because we are solely interested in decelerating the field
itself—not the onset of heat. Thus, if, for instance, qrad

in � 1 and
qrad
out � 0, then a pulse seamlessly enters a given finite region and is

therein be trapped (not exiting radiatively that region, qrad
out � 0),

thereby increasing Dt (the storage or delay time) over the whole band-
width Dx of the open device (the open resonator or the waveguide of
fixed length). If the region is low-loss, then the characteristic delay
time Dt required until the pulse is completely dissipated (if it does not
exit the device at all) will be very large—and decoupled from Dx.
Consequently, T-B limits of any form9–13 can in this manner be
exceeded, since the attained delay (storage time) Dt may, in principle,
become much larger than Dx�1 (determined solely by the device’s
material losses, not by an inverse proportionality to Dx). Note that
the overall losses could also be controlled by, for instance, judiciously
introducing a “scattering” channel (e.g., to a different port); therefore,
this may be a potential way for enabling and controlling very high
intracity power inside open nonreciprocal cavities—up to the onset of
nonlinear (if not needed) or material-damage effects.

The ultimate limit on how large the T-B product can become is
set by the dissipative rate in the open nonreciprocal cavity, that is,
from its “finesse,” F. In recent works,23,47 it has been shown that this
ultimate limit on the T-B product (TBP) is given by the following
relation:

TBP ¼ F= 2pð Þ þ 1; (2)

a relation which holds true, both, for LTI and time-varying struc-
tures—the only difference being in the precise mechanism via which
the in-coupling loading of the cavity is in each case realized. This rela-
tion implies that not only can the standard TBP (¼ 1) be overcome

but that, in fact, it can attain huge values of the order of the finesse of a
cavity, that is, many orders of magnitude in suitably designed
extremely low-loss open structures—orders of magnitude above the
standard “unity” (¼ 1) T-B limit of closed ordinary cavities.

WHAT IS THE DIFFERENCE WITH “CRITICAL
COUPLING” IN CONVENTIONAL CAVITIES?

Critical coupling in standard cavities1,3,14 refers to the situation
where all the incident wave energy in-couples to the cavity, e.g., from a
waveguide, without any reflection—thus, at first sight, this standard
scenario might look similar to the one described above for nonrecipro-
cal cavities, since in both cases light is in-couped to a system and there
is no radiative (optical) outcoupling. However, there is a key differ-
ence, directly affecting how the T-B limit can be overcome: In nonre-
ciprocal cavities, the reflectionless in-coupling occurs over broad
bandwidths even for very low-loss (C ¼ small) structures, for which
the bandwidth is otherwise (in standard cavities) narrow (Dx ¼ C).
The difference in the bandwidth performance between nonreciprocal
open cavities and critical coupling in conventional (reciprocal) closed
cavities can, thus, be very large, as Fig. 3 shows—with this enhanced
bandwidth performance leading ultimately to overcoming the T-B
limit by a large degree.9,10

PHYISCALLY, HOW IS THE TIME-BANDWIDTH LIMIT
OVERCOME IN NONRECIPROCAL OPEN CAVITES?

In order to delay a wave, what is required is a mechanism for
decelerating or altogether preventing its propagation, “holding” it in a
given finite region of space. One way of doing this is via resonant cavi-
ties where instead of propagating, a wave accumulates in the cavity,
building up its amplitude from the incident wave energy.
Conventionally, for this to happen, what is required is a 2p phase shift
over a round trip inside the cavity (for a given wave-frequency x0), so
that constructive interference over multiple roundtrips leads to the
energy accumulating inside the cavity. For standard cavities, this

FIG. 3. Absorption resonance in a conventional cavity (green line) and in a nonre-
ciprocal open cavity (red line with symbols) with the same loss ci
�3.0614� 109 rad/s [cf. Eq. (2)]. In this example, the nonreciprocal open cavity
(hotspot) is formed at the end of a terminated unidirectional waveguide, operating
in its complete unidirectional propagation (CUP) region. Adapted from Ref. 10.
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process is mathematically described by the following equation3,9,10,16

(see also Fig. 1):

da
dt
¼ ix0a� ci þ crð Þaþ jinsþ; (3)

where a is the field amplitude inside the cavity, x0 is the resonance fre-
quency of the (assumed, single) cavity mode, ci and cr are the intrinsic
and radiative loss rates, respectively, jsþj2 is the power incident onto
the cavity from an external system, e.g., a waveguide, and jin is the
coupling coefficient between that external system and the cavity. Here,
the key term is “ix0a,” where x0 is the peak of the resonance in the
cavity.

The open resonance in a nonreciprocal cavity, on the other hand,
is a broad, flat-top (no single-peak/plateaued) open resonance (a reso-
nance of an open resonator) with no well-defined single x0 peak (on a
linear scale), as illustrated in Fig. 3. Physically, this flat-top open reso-
nance can be attained within the unidirectional band of a terminated
topological waveguide:9,10 Because the terminated guide allows propa-
gation strictly in only one direction, forbidding back-reflections from
its end, or other scattering, a broadband pulse can rigorously be
trapped at its end in a topologically enforced and protected way10,26

without requiring a “hard” boundary at its trailing end as in conven-
tional cavities—that is, without giving rise to a standing wave [“ix0a”
term in Eq. (2)]. In this way, broadband radiation can be slowed down
and trapped for times much larger than Dx�1, the inverse bandwidth
of the structure, breaking the T-B limit by a large degree. In Fig. 3, in
particular, the degree to which the limit is overcome is precisely the
degree to which the bandwidth of the nonreciprocal cavity (red line) is
broader than the bandwidth of the conventional cavity (green line) of
the same intrinsic loss—in this case, by a factor of�1000.

CANNOT THE SAME BROADBAND TRAPPING OCCUR
IN TAPERED, PLASMONIC OR OTHER, WAVEGUIDES?—
ROLE OF TOPOLOGY

In the ideal macroscopic theory, a guided pulse could, in princi-
ple, be stopped (zero group velocity, vg ¼ 0) and localized in tapered
plasmonic or other waveguiding structures.21 However, it is by now
well appreciated that such a state is not stable in the optogeometric
parameters space, that is, small, unavoidable (nm-scale, or less) surface
roughnesses, defects and material inhomogeneities prohibit the
stopping and localization. Physically, this occurs because a zero group-
velocity corresponds to an infinite group refractive index, which prac-
tically cannot be attained. This is because in the stopped-light regime,
a guided wave has even more time to interact with the aforementioned
structural imperfections, as a result of which it is eventually either
back-reflected27–29 or even split in parts and scattered.30

Thus, nonreciprocity and topology31—both, important even in
the usual light regime of integrated optoelectronic and photonic struc-
tures—are particularly crucial in the slow- and stopped-light regime
and, as a number of recent works have elucidated,32–44 play a key role
for attaining prolonged and broadband (i.e., T-B unlimited) light local-
ization in topological, terminated, or “rainbow trapping” structures. In
the latter approach, use can be made of the concept of synthetic
dimensions.

A synthetic dimension in graded rainbow trapping structures can
be constructed by exploiting a translational degree of freedom34—e.g.,
inside the unit cell of a two-dimensional chirped photonic crystal
waveguide. The translational grading (tapering) gives rise to a nontriv-
ial topology in the synthetic dimension, which, in turn, results in
robustly localized (stopped) surface states where different frequencies
are localized at different positions along the guide (“rainbow

FIG. 4. (a) Schematic diagram of a topological “trapped rainbow” structure with light coupled-in using a dielectric waveguide. (b) Normalized energy density distributions along
the interface shown in (a). The blue and gray parts are regions of existence and nonexistence of interface modes. (c) Different light frequencies being rigorously stopped and
trapped at different positions along the topological guide of (a). (d) Comparison between the band structures of different methods for generating slow topological edge modes.
The first two methods illustrate how, conventionally, slow edge modes exist over a narrow range of frequencies, while the third (lower) method gives rise to a slow edge mode
with a large bandwidth. (e) A method for generating the band diagram of the lower panel in (d), illustrating the edge termination with wavy red lines indicating reduced nearest-
neighbour couplings. The couplings are reduced by a factor that begins with q0 at the edge and linearly tapers to a final value of qf. Up to these factors, the nearest-neighbour
coupling pattern repeats n times (here, n¼ 2) under translation by 3R2 before terminating at the bulk of the structure. Adapted from Refs. 32 and 35.
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principle,”21 see Fig. 4). Such “topological trapped rainbows” can rig-
orously stop and localize states of different frequencies at different
positions along a topological waveguide, controlled by the tuning of
the spatial modulation of the states’ group velocity.27,32,35,40–44 For
photonic crystal structures, in particular, the operation frequency as
well as the bandwidth of the topological trapped rainbow can be tuned
by controlling the bandgap of the photonic crystal and is completely
decoupled from the storage (stopping) time.34 This topological princi-
ple can be applied to photonic crystals of any symmetry and material
composition, so long as a complete bandgap exists.

A further topological approach for attaining broadband topologi-
cal slow is based on engineering the edge termination of a periodic
structure, by which a topological edge mode can be made to wind
many times around the Brillouin zone as it crosses the bandgap,
thereby giving rise to slow light over a large range of frequencies.32 The
number of times the edge mode winds around the zone is determined
by the depth of the linearly tapered modification (rainbow principle,21

see Fig. 4) of the edge termination perpendicular to the direction of
propagation. In the direction parallel to the edge, the termination does
not expand the size of the unit cell; therefore, it generates multiple
windings differently from simple band folding. Note that since here
light is slowed down without reducing the width of the bandgap, its
existence remains protected against even strong disorder, i.e., as long
as disorder does not close the large topological bandgap. With this
approach, too, one is able to overcome the mechanism by which the
T-B limit usually arises in waveguides: Normally, in order to slow
down light and increase the delay Dt, one has to decrease the group
velocity vg ¼ dx/db, but that automatically reduces the bandwidth
Dx over which Dt increases, thereby giving rise to the standard limit
(for an assumed fixed length of the guide). Here, however, this mecha-
nism is not invoked, as the ability to slow down the mode without
reducing its bandwidth is enabled by the fundamentally 2D nature of
the system with different frequencies residing at different depths in the
structure (“rainbow” principle). As a result, the minimal group veloc-
ity (maximal Dt) attainable at a fixed bandwidth Dx (and a fixed
device length L) is determined by the system size in the direction
orthogonal to the direction of propagation, not by an inverse propor-
tionality to Dx—i.e., Dt and Dx are decoupled, which is the very defi-
nition of overcoming the T-B limit.

In terminated topological structures,9,10 on the other hand, wave
propagation is halted by the use of a terminating metallic layer (not by
reducing vg to zero), where back-reflections and scattering are pre-
vented owing to the topological design of the structure. This form of
prolonged localization too survives from all of the aforementioned
realistic material effects, as well as from dissipative losses and nonlo-
cality when suitably designed. Both classes of structures, as well as (a
third approach) the use of multiple resonances, judiciously spaced
spectrally, on metasurfaces whereby one can combine the strong delay
of constituent resonances with the broad aggregate bandwidth of the
resonances ensemble while ensuring spectrally constant aggregate
bandwidth—an approach which has now been demonstrated, both,
theoretically and experimentally45,46—form a mounting body of
works9,10,21–47 showing that even linear time-invariant (LTI) devices
can slow down or even localize and trap light pulses beyond the T-B
limit of standard resonant or waveguiding structures. We note, in
passing, that in the case of terminated waveguides it is not strictly nec-
essary to reduce the group velocity to “zero,” since light is therein

trapped regardless of its group velocity; in this case, therefore, the
material-sensitive zero-vg point (divergent group refractive index) is
avoided, and “slow” light has to be understood in terms of the time
delay that the trapped light still experiences, i.e., it is slow (time
delayed) in that sense strictly.

It also to be noted that, in general, topological corner states do
not break the T-B limit, because these states are not, simultaneously,
nonreciprocal—they arise at the corners of a higher-order (photonic)
topological insulator (HOTI) and a topologically-trivial material, but
the band structure of the HOTI is usually symmetrical around k¼ 0,
i.e., reciprocal. As Fig. 2 shows, in order to break the T-B limit, one
needs to make the in-coupling energy rate qin in an open cavity be dif-
ferent (larger than) the outcoupling energy rate qout (qin � qout), so
that an injected pulse stays inside the cavity (i.e., is delayed), without
exiting it, for long times (“Dt” large). This (qin 6¼ qout) can only occur
if the structure, in addition to being topological (for providing robust-
ness to material imperfections and nonlocality), is also nonreciprocal.
However, if such HOTI corner states are designed such that they also
feature broken time-reversal symmetry (i.e., be nonreciprocal/asym-
metric around k¼ 0), then these states too could be used for overcom-
ing the T-B limit.

WHAT APPLICATIONS COULD BE ENABLED
BY OVERCOMING THE LIMIT?

As has recently been established,23 the T-B product of a device
can also be seen as a practical figure-of-merit for the enhancement in
intra-cavity power—the degree to which the limit can be exceeded
exactly corresponds to the degree to which light power increases inside
a device. Thus, devices operating beyond the limit will be uniquely
positioned to enhance optical nonlinearities or achieve ultrafast active
control.49–57 Nonlinear photonic interactions (e.g., cross-phase modu-
lation, self-phase modulation, and so forth) are characterized by the
various nonlinear susceptibilities of a medium, and such materials
enable a host of application-rich effects. The nonlinear interactions
can here be greatly enhanced due to the compression of the local
energy density as a broadband pulse is decelerated inside the device.21

This could allow for nonlinear processes to occur at much lower oper-
ating powers than conventionally required, potentially leading to
improved optical switching, additional signal processing capability,
and low-power wavelength conversion.

With the above feats in mind, a further key property of active
such devices will be their ability to decelerate multiple (rather than
only one, as in the case of a T-B limit �1) light pulses and apply on
them adjustable optical-signal delays. Existing optical-delay techni-
ques, such as fiber delay lines, Bragg gratings, or free-space optics, lack
delay control and suffer from the limited tuning range. The emergence
of optical delay lines with enhanced tunability, lying at the heart of
many system-level optical signal processing devices and techniques,
could enable applications such as tunable synchronizers, switched data
buffers, and ultra-compact filters.

The enhancement of nonlinearities can be large enough to pro-
duce measurable effects due to single-photon input fields—an effect
already well-established even for T-B limited slow-light devices. There
is a principal way a single-photon nonlinearity could here be useful as
a source of single (e.g., Foch-state) photons with controllable spatio-
temporal characteristics.
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Indeed, the controlled and consistent production of single pho-
tons is an essential enabling technology for the field of quantum infor-
mation science. At present, non-classical (i.e., sub-Poissonian) single
photons are generated by conditional acceptance of photon pairs pro-
duced via spontaneous downconversion processes in nonlinear crys-
tals. While this is a vigorous approach, there are key limitations to the
use of nonlinear crystals. Indeed, the characteristic correlation time of
the produced photon pair is typically on the order of a picosecond,
which implies that the use of correlated photon pairs must have trans-
mission distances hundred(s) of micrometers in order to be measured
via, e.g., Franson-type interferometry—a challenging task as the propa-
gation length increases. Furthermore, non-classical photons with
large bandwidths pose detection and measurement challenges too—
detectors need to be broadband, leading to more noise within a detec-
tion channel, while generating single-Foch states via transmission of
one, conditional on the detection of the other, becomes challenging as
well. Broadband slow light with the afore-described characteristics
could lead to the production of correlated photons at rapid rates with
coherence times orders-of-magnitude enhanced and potentially ease
similar integration problems occurring when sending non-classical
photons over large distances.

Further envisaged applications of beyond-the-limit slow and
stopped light, the regime, where the density of states and the Purcell
factor dramatically increase, would be ultralow-light-level all-optical
switching, enhanced chiral nanobiosensing, optical micro-combs, and
enhanced spontaneous emission rates—appealing for fast light-
emitting diodes (nano-LEDs) with an ultimate goal of attaining spon-
taneous emission rates faster than around 50GHz, so that LEDs could
become faster than lasers.54–56 All devices relying on strong light-
matter interactions48 would benefit from the above regime because, as
explained before, the degree to which the T-B limit is exceeded exactly
corresponds to the degree to which power inside a device increases,
thereby potentially enabling unprecedented capabilities in the fields of
metamaterials, plasmonics, nanophotonics, and nonlinear optics—
both, classical and quantum.

OUTLOOK

The objective of this Perspective has been to raise awareness
about the important and wide-ranging limitations arising from the
time-bandwidth limit and that a growing body of recent works9,10,21–47

point to the fact that this limit can be overcome—even in linear time-
invariant structures. To be clear, as has been established,11–13 this is
indeed a real limit, in the sense that, as explained above, for a given
(fixed) device length or footprint, it does currently severely restrict the
performance of many contemporary devices—but the aforementioned
body of works makes one confident that the limit is not fundamental
and should rather be seen similarly, e.g., to the diffraction limit,
which—it too—is a real limit, but can be—and has been2—overcome
with various techniques. We believe that if losses in the fields of meta-
materials and plasmonics are an important limiting factor, to which a
great of effort has been devoted,56,57 similar attention should be
directed toward overcoming the T-B limit, which has even broader
implications and is not restricted only to metallic structures but con-
cerns dielectric devices too.

Three methods have been reviewed for overcoming the limit in
LTI structures—topological rainbow trapping,27,32,35,40–44 electric or
magnetic termination of unidirectional or topological waveguides,9,10

and multiple (spectrally interleaved) sharp resonances on metasurfa-
ces.45,46 The first method allows for rigorous, topologically protected,
broadband stopping of waves in adiabatically graded (chirped, axially
varying) waveguides with each frequency of a pulse being trapped at
different spatial locations (spatial demultiplexing). Being topological,
the method is immune to such deleterious effects as material losses
and/or dispersion, structural imperfections, and nonlocality. On the
other hand, if metamaterial implementations are pursued, which
involve more intricate fabrication, the scheme may be more suitable
for larger wavelength regimes, including acoustic, elastic, seismic, and
mechanical or thermal waves.

The second method makes use of nonreciprocal, abruptly-
terminated waveguides, which allow for trapping broadband guided
pulses for long times—much longer (e.g., by a factor of �1000) than
the inverse of the bandwidth of the device, i.e., greatly above the T-B
limit. These structures, too, similarly to their topological rainbow trap-
ping counterparts, are insusceptible to structural imperfections and
material losses or dispersion but may be affected by nonlocality—
although in practical (lossy and dispersive) devices, the role of nonlo-
cality in opening a backreflection escaping channel is, realistically,
minimal. Such a channel can be altogether eliminated by making these
structures topological, e.g., simply by removing a dielectric material
layer and by exciting an upper dispersion band. Furthermore, being
nonreciprocal, that is, rigorously allowing for one-way propagation,
these structures need not be adiabatically tapered, which can greatly
reduce their length and lead to more compact device footprints.
Moreover, being abruptly terminated and preventing back-reflections,
the same structures allow for the generation of broad-bandwidth,
extremely intense hotspots with electric-field enhancements of the
order of 104 (some of the highest ever reported),10 ideal for boosting
nonlinear and light-matter interaction effects. It is also to be noted
that in these structures, the group velocity of the guided pulse need not
be reduced to zero, since trapping is achieved in an open cavity
exploiting an impenetrable barrier and nonreciprocity to avoid backre-
flection, thereby a potentially “structurally sensitive” divergent group
refractive index is bypassed with rigorous trapping being attained
regardless of the group velocity of the guided pulse.

The final, third, type of LTI structure for overcoming the T-B
limit, for which there is, both, theoretical and experimental evidence
on its efficacy, but which nonetheless is not the main focus of the pre-
sent Perspective, exploits closely spaced multiple resonances, and its
main characteristics are outlined herein for the sake of completeness.
The method exploits ultrathin, deep-subwavelength, achromatic meta-
surfaces, in which a spectrally constant group delay is ensured across
the combined bandwidth of the resonances, thereby being able to delay
arbitrary-broadband pulses (depending on the number of closely-
spaced resonances used) without group-velocity distortion. This
method is well-suited for the diverse applications that metasurfaces
have found, and an essential next step would be to extend it to optical
wavelengths, where metalenses and optical holograms are key envis-
aged devices. Also interesting would be to explore the degree to which
the T-B limit can practically (in the presence of structural imperfec-
tions) be exceeded in these structures with first experiments showing
already a promising potential.

We note in passing that there are also experimental works
reported making use of breaking either the “L” (linearity)23 or “T”
(time invariance)47 assumption to bypass the limit. Since the fields of
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topological photonics and acoustics31,58 are currently very active, and
growing, one can be hopeful that experimental demonstrations of the
first two methods, too, will soon emerge. Theoretical works reporting
time-varying schemes for bypassing the limit have also been
reported,59 and those schemes too can trap broadband waves—though
it is not yet clear how resilient they potentially are to perturbations
and material or structural imperfections.

We also note that most theoretical studies to date have focused
on two-dimensional structures, but nonetheless the extension to three
dimensions is quite straightforward and has been reported in the liter-
ature in several studies.60 For instance, YIG-based two-dimensional
unidirectional waveguides, cladded with perfect electric conductor
(PEC) metals on the upper and lower xz planes of the guide, give rise
to transverse electric (TE) modes, where (if x is the direction of propa-
gation) the three components of a mode are Ez, Hx, and Hy. Here, the
z-direction electric-field component makes it possible to cover the
structure with a PEC metal on two xy planes too, thereby making
the structure three dimensional with no influence at all on its one-way
properties, because the electric-field component remains perpendicu-
lar to the PEC boundaries on the xy planes.

On the other hand, it is interesting to note that when applied to
periodic photonic crystal (PhC) line-defect waveguides, topological
edge states at an interface between, specifically, valley-Hall crystals of
opposite K-valley pseudospin are usually below the light line of the
slab, thereby decoupled from the radiation continuum.33 As a result,
in principle, these edge states do not intrinsically exhibit out-of plane
losses, and only fabrication imperfections induce coupling to radiating
modes. Under such conditions, in-plane backscattering becomes the
dominant loss mechanism in the ultraslow-light regime (large values
of ng)—therefore, even two-dimensional PhC structures with the above
topological implementation suffice to capture the physics of slow-light
backscattering, which is not necessarily possible with other implemen-
tations of topological PhCs. Detailed calculations33 have shown that
topological valley-Hall photonic phases are, by approximately five
times, more robust compared to standard PhC waveguides for small
(technologically realistic) disorder levels—though this protection is, as
expected, lost at higher levels of disorder. Large group refractive index
values can, thus, be attained, of the order of ng ’ 1000, opening a
promising route for strong and efficient light-matter interactions,
where photon transmissions over hundreds of micrometers can be rea-
sonably backscattering-free.

Concerning applications enabled by overcoming the limit, these
would indeed be diverse, both, for classical and quantum devices,
including but not limited to broadband low-loss nano-/micro-
cavities,1,14 enhancement of nonlinearities,21 spontaneous emission
rates and wave-matter interaction effects,54,55 broadband room-
temperature single-molecule strong coupling, broadband single-
platform nanobiosensing21,53 including chiral sensing,18–20 all-optical
buffers, broadband integrated spectrometers, single-photon sources
with controllable spatiotemporal characteristics,52 broadband invisibil-
ity cloaking of electrically-large objects (currently, a severely T-B lim-
ited scheme),50,51 enhanced absorption for photovoltaics,60–62 and
improved nanoscale delivery of light for imaging and sensing,17 to
name only a few. All of these potential routes and applications are cur-
rently actively being researched, and it remains to be seen which one
will eventually emerge and offer much required solutions to contem-
porary real-world applications and challenges.
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