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Abstract 

Here we report definite results on the mathematical metabolization of Maxwell’s equations in 

one of the building units, most commonly met in practice. We investigate the static/quasi-static 

case of a linear, homogeneous and isotropic magnetic and dielectric cylinder of intrinsic 

susceptibility, xint, subjected to an external potential/field, Uext/Fext, of any form on the plane 

normal to the directional axis, produced by a primary source that resides at the outside space. 

Specifically, here we address analytically a magnetic and dielectric cylinder of seemingly infinite 

length along the z axis, subjected to an external potential/field, Uext/Fext, that does not vary along 

the z axis, as well. An expansion-based mathematical approach is employed, enabling direct 

access to universal expressions of the response of the magnetic and dielectric cylinder, i.e., the 

internal potential/field, Uint/Fint, produced by the secondary source of bound charges that is 

originally induced by the external potential/field, Uext/Fext. Accordingly, ready-to-use expressions 

of the total potential/field, U=Uext+Uint/F=Fext+Fint, and of the polarization, P, of the magnetic 

and dielectric cylinder are directly obtained. These universal expressions are applicable to every 

distinct problem of different Uext/Fext, without the need to tackle it mathematically, every time, 

from the beginning. Interestingly, the depolarization factor, N, and extrinsic susceptibility, xext, 
are degenerate, obtaining a constant value irrespectively of the mode of the external 

potential/field, Uext/Fext. These universal expressions between Uint-Uext, U-Uext, Fint-Fext, F-Fint 

and P-Fext provide effective means to understand, design and realize cylindrical building units 

with specific characteristics. 

 

Keywords: dielectric cylinders; magnetic cylinders; electric polarization; magnetic polarization; 

dielectric wires; magnetic wires  

  

I. Introduction 

During the last decades spherical and cylindrical structures of dielectric and magnetic materials, 

either compact or hollow shells, are intensively studied theoretically since they are widely 

employed as building units in useful applications. 

Regarding dielectric spherical and cylindrical structures, they are incorporated in applications 

that relate to scattering and shielding/cloaking [1-4], modeling and manipulation of colloidal 

particles and biological cells [5-10] etc. For instance, in [2] Loulas et al. studied the directional 

scattering by dielectric cylinders. By tailoring both the electric and magnetic polarizabilities of 

the cylinders and by using a sinusoidally decaying wave, the authors achieved significant 

backward scattering. In [4] Wu et al. investigated a dielectric cylinder covered by an invisibility 

cloak. The authors proved that the properties of the inner dielectric cylinder and of the outer 
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cloak should be matched appropriately to avoid the transmission of electric fields inside the 

dielectric cylinder. In [7] Zehe et al. studied aggregated human red blood cells in the form of 

rouleaux, thus approximated by dielectric cylinders. Specifically, they investigated the induced 

dipole moment of short cylinders which are free to move/rotate in a liquid conductive medium 

under the effect of an alternating external electric field. Interestingly, the authors considered the 

depolarization effect due to the secondary/bound electric charges that are induced at the 

rouleaux/dielectric cylinder. The polarization and the electro-rotation torque spectra of the 

rouleaux/dielectric cylinder were calculated in closed-form relations for the case of spatially-

homogeneous, alternating external electric field. In [9] Ye et al. investigated the influence of an 

electric field transverse to a uniform, long and straight nerve axon stimulated by a time-varying, 

spatially-homogeneous magnetic field applied parallel to directional axis. To this effect, they 

employed an unmyelinated axon model and provided an analytic expression for the 

transmembrane potential, taking into account the characteristics of the externally applied 

magnetic field (e.g. magnitude, frequency etc) and the properties of the tissue (e.g. conductivity, 

susceptibility etc). In [10] Spreng et al. studied the electromagnetic Casimir interaction between 

two long dielectric cylinders placed inside a liquid ionic medium (i.e. salted water) to model 

processes observed in relevant biological systems, e.g. actin filaments and microtubules. The 

authors demonstrated that under specific biological conditions both entities form bundles through 

the involvement of relevant proteins, processes that can be reproduced on the basis of the 

Casimir interaction. 

Referring to magnetic spherical and cylindrical structures, they are used in scattering and 

shielding/cloaking [11-14], environment [15,16], sorting/manipulation of biological cells [17-

24], diagnosis and therapy in biomedicine [25-32] etc. For instance, in [12] Ma et al. studied an 

elliptic cylinder cloak realized by metamaterials of appropriate, position dependent, anisotropic 

electric and magnetic susceptibilities. The authors studied the efficiency of cloaking for different 

angles between the major axis of the elliptic cylinder and incident wave beam, evidencing that 

for the parallel/non-parallel case the cloaking effect is complete/incomplete. Evidently, when the 

major and minor axes of the elliptic cylinder are practically equal the authors obtained the results 

expected for the circular cylinder. In [21] the authors reviewed the synthesis and chemical, 

electrical, magnetic, and optical properties of high-aspect-ratio nanoparticles, i.e. rods, wires, and 

tubes of nano dimensions. These were exploited for the controlled engagement with cells and 

biomolecules in sensing, separation, and delivery applications. In [23] Cribb et al. investigated 

the magnetotransport behavior of spherical and cylindrical magnetic particles under controlled 

magnetophoretic conditions by using solutions of lambda-phage DNA as a host liquid medium. 

The obtained results are useful for therapeutic biomedical applications such as drug delivery and 

hyperthermia. In [24] Hultgren et al. reported on the experimental use of magnetic nanowires for 

cell separation purposes. Specifically, the authors employed NIH-3T3 mouse fibroblasts and Ni 

nanowires of 350 nm diameter and 35 μm length. The used cells had high affinity for binding to 

the hydrophilic layer of native oxide formed on the Ni nanowires. The authors demonstrated 

separation purity higher than 90% and yield of 49%. In [27] Zubarev et al. investigated 

hyperthermia theoretically, focusing on the production of heat by rod-like ferromagnetic 

nanoparticles hosted as a dilute suspension by a Maxwell viscoelastic liquid, when subjected to a 

linearly polarized ac magnetic field. The authors considered both mechanisms involved in the 

production of heat (i) the Brownian one, relating to the simultaneous rotation of each magnetic 

moment together with the host nanoparticle and (ii) the Néel one, referring to the rotation solely 

of each magnetic moment while the host nanoparticle preserves its original orientation. The 
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systematic study of all relevant parameters such as the shape and the magnetic susceptibility of 

the rod-like nanoparticles, together with the rheological properties of the liquid medium, enabled 

the authors to clarify the mechanisms that determine the efficacy of heat releasing. In [30] Wang 

et al. reported on the potential use of ferromagnetic hollow cylinders as contrast agents in 

magnetic resonance imaging. More specifically, micro/nano-scale hollow cylinders of iron oxide 

were fabricated due to their biocompatibility and tunability and proposed as potential contrast 

agents in magnetic resonance imaging. In [32] Hournkumnuard et al. focused on drug delivery 

by means of drug-carrying ferromagnetic nanoparticles that were captured by ferromagnetic 

microwires formerly implanted within blood vessels. To this effect an external spatially-

homogeneous magnetic field was applied to magnetize the microwires and activate them as 

efficient magnetic traps for the retention of the drug-carrying magnetic nanoparticles. The 

authors evidenced that the retention effectiveness of the magnetic microwires was significantly 

improved when the spatially-homogeneous external magnetic field that was applied had strength 

on the order of 0.8 T. 

Practically all the above works referred to the cases either of a spatially-homogeneous external 

electric/magnetic field or at high frequencies and were, mostly, computational. In the present 

work our motivation was to obtain analytical expressions for the more demanding general case 

where the external DC or low-frequency AC electric/magnetic field has any form, at least on the 

plane normal to the cylinder, while it preserves homogeneity only along the cylinder’s axis. 

Except for its importance per se, such theoretical toolkit of analytical expressions will be useful 

for relevant applications. 

Before proceeding with the analytical solution, we set the problem, we describe the overall 

employed approach and clarify the notation of the involved physical entities. Generally, in these 

cases, the dielectric and magnetic spheres and cylinders are exposed to an external potential, 

Uext(r) (electric, Uext(r), and magnetic, Um,ext(r), respectively) that associates to the relevant 

external field, Fext(r) (electric, Eext(r), and magnetic, Hext(r), respectively). It should be noted 

that Uext(r)/Fext(r) are applied by the user and originate from a primary source (else, free source) 

that resides outside the spheres and cylinders. The response of the dielectric and magnetic 

spheres and cylinders is the internal potential, Uint(r) (electric, Uint(r), and magnetic, Um,int(r), 

respectively) that relates to the relevant internal field, Fint(r) (electric, Eint(r), and magnetic, 

Hint(r), respectively). These internal entities originate from a secondary source (else, bound 

source) that resides at the spheres and cylinders [33-35]. The total potential, 

U(r)=Uext(r)+Uint(r), and total field, F(r)=Fext(r)+Fint(r), are obtained easily through the 

superposition principle [33-35]. It should be stressed that for any applied external potential/field, 

Uext(r)/Fext(r), the physical entities of interest are the internal Uint(r)/Fint(r) and total U(r)/F(r) 

ones. These should be obtained throughout the whole space, i.e. both inside and outside the 

spheres and cylinders. The case of linear, homogeneous and isotropic dielectric and magnetic 

spheres was addressed mathematically in [36]. In that work [36] a series-based strategy was 

introduced that enabled us to obtain universal expressions for the internal Uint(r)/Fint(r) and total 

U(r)/F(r) potential/field and the polarization, P(r), of dielectric and magnetic spheres, literally, 

for any form of the external Uext(r)/Fext(r), applied by the user. 

Here, we focus on another standard case, that of the magnetic and dielectric cylinder (else, wire 

or filament), used in many applications as a building unit. Specifically, by using the Maxwells’ 

equations we investigate a magnetic and dielectric cylinder coming from a linear, homogeneous 

and isotropic parent material of known intrinsic susceptibility, xint (0 ≤ χe
int and −1 ≤ χm

int, 

respectively). The cylinder is of infinite length (else, its length, 𝐿, is orders of magnitude higher 
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than its diameter, 𝐷 = 2a, see Figures 1(a)-1(b), 2 and 3, below) and is subjected to a DC 

external potential/field, Uext(r)/Fext(r) (the results obtained here hold for the quasistatic case of an 

AC field of low-frequency, as well). As done in [36], here we aim to handle the most general 

case where the external, Uext(r)/Fext(r), are of any form. However, in contrast to a sphere, the 

cylinder does not possess shape symmetry on both the azimuthal and polar angles. Thus, due to 

the luck of absolute shape symmetry here we study the case where the external potential/field, 

Uext(r)/Fext(r), can have any form only on the plane normal to the directional axis of the cylinder 

(let us say z axis), while they preserve translational invariance along it. These are produced by a 

primary source (else, free source) that resides outside the cylinder and is handled by the user. 

Below, we find the internal, Uint(r)/Fint(r), and total, U(r)/F(r), entities, both inside and outside 

the magnetic and dielectric cylinder, together with its polarization, P(r) (P and M, respectively). 

Our mathematical strategy metabolizes all lengthy calculations that are unavoidable by standard 

methods, enabling us to obtain universal and reliable expressions for all Uint(r), Fint(r), U(r), F(r) 

and P(r) that are applicable for any form of Uext(r)/Fext(r), without the need to tackle each new 

problem from the beginning. This is fairly documented for a couple of representative cases met 

in the literature. Our universal expressions pave the way to understand and manipulate the 

response of magnetic and dielectric cylindrical units at will. This property can be useful in 

applications. 

 

II. Materials and methods 

Magnetite (Fe3O4) nano/micro-cylinders were synthesized by means of a hydrothermal route. 

Specifically, a stochiometric mixture of FeSO4∙7H2O and Na2S2O3∙5H2O is placed inside an 

autoclave preloaded with an aqueous solution of PEG of molecular weight 400 D 

(PEG/H2O=1/9), then NaOH is added and the autoclave is exposed at a relatively low reaction 

temperature, Treac=150 0C, for the desired duration, treac=24 h. All chemicals were purchased 

from Merck (Merck, Darmstadt, Germany) and were of purity above 99%. 

Magnetization loops were obtained via a Superconducting Quantum Interference Device 

(SQUID) magnetometer, model MPMS 5.5T (Quantum Design, San Diego, CA, USA). 

Microscopy images were obtained via a Scanning Electron Microscope, model Quanta Inspect 

(FEI Technologies Inc, Hillsboro, OR, USA). 

 

III. Magnetic cylinder -linear, homogeneous and isotropic- subjected to an external 

pseudopotential/field of any form  

In this section we apply our approach in a detailed way for the case of a magnetic cylinder. The 

results for the dielectric cylinder are summarized in the next section. Both cases are investigated 

on the basis of the Maxwells’ equations. The general case of a magnetic and dielectric cylinder is 

schematically presented in Figures 1(a)-1(b). Ideally, to claim independence from the position 

along the z axis, the cylinder should be infinite. In practice, the same claim is satisfied by a 

cylinder of finite length, L, and radius, a, under the condition, L/a ≫ 1. In this case, the two 

edges of the cylinder should have negligible contribution in comparison to that of its extended, 

central part. The cylinder is subjected to an external potential/field, Uext(r)/Fext(r), of any form, 

applied by the user through a primary source, i.e. free charge/current density, that is placed 

outside the cylinder (not shown in Figures 1(a)-1(b)).  

 

Page 4 of 33AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-144351.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



5 
 

 
Figure 1. (a) Schematic presentation of a 3-dimensional cylinder of linear, homogeneous and 

isotropic parent material with intrinsic susceptibility, xint. The cylinder has length L and radius a 

(with L/a ≫ 1) and is subjected to an external potential/field, Uext(r)/Fext(r). The potential/field 

can have any form of inhomogeneity on the normal x-y plane, however, is homogeneous along 

the directional axis (cylinder’s axis, z). (b) Schematic presentation of the cylinder on the x-y 

plane. Due to the independence of both the cylinder’s properties and of the external 

potential/field, Uext(r)/Fext(r), from the position along the z axis, the original 3-dimensional 

problem is actually 2-dimensional.  

 

Here we investigate the case where the primary source is homogenous along the z axis, so that 

the produced external potential/field, Uext(r)/Fext(r), are independent of z, as well. In addition, the 

cylinder is compact, has radius a, and consists of linear, homogeneous and isotropic material of 

intrinsic susceptibility, xint (i.e., 0 ≤ χe
int for a dielectric material and −1 ≤ χm

int for a magnetic 

material). The external Uext(r)/Fext(r) induce secondary sources, i.e. bound charge and 

pseudocharge densities, that reside at the cylinder. In the general case, the induced bound 

pseudocharges and charges are both volume (ρm,b(𝐫) = −𝛁 ∙ 𝐌(𝐫) and ρb(𝐫) = −𝛁 ∙ 𝐏(𝐫)) and 

surface (σm,b(𝐫) = (𝐌(𝐫) ∙ 𝐧̂)|S:ρ=a and σb(𝐫)|ρ=a = (𝐏(𝐫) ∙ 𝐧̂)|S:ρ=a) ones, due to the, 

possibly, volume-nonhomogeneous and, surely, surface-discontinuous behavior of the 

polarization, P(r) (M and P, respectively) [33-35]. Here, ρm,b(𝐫) = ρb(𝐫) = 0 due to the 

homogeneous nature of the cylinder. Thus, in our case the only secondary source is the σm,b(𝐫) 

and σb(𝐫), induced at the surface of the cylinder, S: ρ = a. Accordingly, depending on the 

magnetic and dielectric case, σm,b(𝐫) and σb(𝐫), will produce the internal potential/field, 

Uint(r)/Fint(r), as a response of the cylinder to the external potential/field, Uext(r)/Fext(r). Taking 

into account the above information, in our case the 3-dimensional problem, Figure 1(a), obtains a 

2-dimensional character, Figure 1(b), while the internal Uint(r)/Fint(r) depend only on the polar 

coordinates, so that they become Uint(ρ,φ)/Fint(ρ,φ). 

The conditions discussed above are realistic and can be met in a plethora of applications. For 

instance, in Figure 2 we show results for the magnetic case. Specifically, we show a 
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magnetization loop, m(Hext), and a representative scanning electron microscopy image for a 

sample of magnetite (Fe3O4) in the form of nano/micro-cylinders.  

 

 
Figure 2. Isothermal SQUID DC magnetization loop as function of external magnetic field, Hext, 

obtained at room temperature, T=300 K, for a sample of magnetite (Fe3O4) nano/micro-

cylinders. The magnetization data obtained at low values of Hext (i.e., within −0.6 kOe ≤
Hext ≤ 0.6 kOe) can be reproduced by a linear fit shown by the blue, thick, straight line. The 

inset shows a representative SEM image of the magnetite nano/micro-cylinders. 

 

The results of Figure 2 document two important things. First, the magnetization data obtained at 

low values of Hext (i.e., within −0.6 kOe ≤ Hext ≤ 0.6 kOe) can be reproduced quite effectively 

by a linear fit. This is shown by the blue, thick, straight line, m(Hext) = 64.5Hext + 5.2 

([m]=emu/g, while [Hext]=kOe). Thus, the magnetite nano/micro-cylinders exhibit an almost 

linear constitutive relation, m(Hext), at least in the regime prior to saturation. Second, from the 

SEM image of the inset we infer that the typical values of the length, L, and radius, a, of the 

magnetite nano/micro-cylinders range within 1 μm ≤ L ≤ 30 μm and 20 nm ≤ 2a ≤ 200 nm. 

Thus, in these samples the condition L/a ≫ 1 is satisfied. By taking into account both the 

magnetic behavior and the microstructure, these magnetite nano/micro-cylinders is a nice model 

system for the magnetic case.  

Another model system that fits the subject of the present work comes from the field of 

superconductivity, since in the Meissner state, i.e., below the lower critical field, Hc1, the 

superconductors behave diamagnetically in an absolutely linear way on the external applied 

field, Hext. For energy applications and for the production of high magnetic fields, composite 

wires that consist of both superconductors and normal metals are of particular interest. Figure 3 

shows data for the case of Nb nano/micro-cylinders (else, nano/micro-wires and nano/micro-

filaments) employed in the realization of composite Cu-Nb wires [37,38]. The SEM image of the 

inset shows the Cu-free, bare Nb nano/micro-cylinders when the Cu matrix has been removed 

through exposition to nitric acid for a few minutes [37]. The magnetization loops of the main 

panel were obtained for a Cu-15%Nb wire at T = 4.5 K < TC and show comparatively the 

behavior of the original Cu-15%Nb wire and of the bare Nb nano/micro-cylinders after 

dissolution of the Cu matrix. We see that the bare Nb nano/micro-cylinders behave linearly on 

the external magnetic field, Hext (in the original Cu-15%Nb wire, the presence of the Cu matrix 
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adds an extra magnetization peak observed at H∗, due to the proximity effect [38]). Accordingly, 

the magnetization of the bare Nb nano/micro-cylinders for Hext ≤ Hc1 (i.e., within 0 ≤ Hext ≤
1.1 kOe) is nicely described by a linear fit as shown by the blue, thick, straight line, 

mnor(Hext) = −0.83 × 10−3Hext − 0.45 × 10−3 (mnor is dimensionless, while [Hext]=kOe). 

Thus, the bare Nb nano/micro-cylinders for Hext ≤ Hc1 exhibit a linear constitutive relation, 

m(Hext). Also, these bare Nb nano/micro-cylinders have ideal size characteristics since their 

length, L, exceeds by many orders of magnitude their radius, a, so that the condition L/a ≫ 1 is 

surely satisfied. 

 

 
Figure 3. Isothermal SQUID DC magnetization loops as function of external magnetic field, 

Hext, obtained at temperature T = 4.5 K < TC for a Cu-15%Nb wire (red open circles) and for 

the Cu-free, bare Nb nano/micro-cylinders (black spheres) after dissolution of the Cu matrix by 

means of nitric acid. The magnetization data obtained for the bare Nb nano/micro-cylinders at 

Hext ≤ Hc1 (i.e., within 0 ≤ Hext ≤ 1.1 kOe) are reproduced by a linear fit shown by the blue, 

thick, straight line. The inset shows a representative SEM image of the bare Nb nano/micro-

cylinders. Both SQUID and SEM data are reproduced from [37,38]. 

 

Returning to the mathematical part, in the rest of this section we apply our method, with all 

necessary details, on the magnetic cylinder. The results for the dielectric cylinder are 

summarized, in brief, in the next section. Before proceeding, we have to note an important issue 

that relate in all these cases, that of the depolarization process. The limited size of all realistic 

specimens, inevitably results in a discontinuity in the polarization, P(r), at their surface. Thus, 

electric and magnetic poles, i.e., bound charges and pseudocharges, always appear at the surface. 

These secondary sources produce an internal potential/field, Uint(r)/Fint(r) (else, depolarization 

field) that acts against the external ones, Uext(r)/Fext(r), tending to depolarize the specimen. The 

internal entities, Uint(r)/Fint(r), relate to the external ones, Uext(r)/Fext(r), through the so-called 

extrinsic susceptibility, xext, and depolarization factor, N [39-42]. Finding closed-form 

expressions for these entities, whenever possible, is of paramount importance for applications 

(see below).    

For the magnetic cylinder discussed in this section, the total pseudopotential/field, Um(𝐫)/𝐇(𝐫), 

are given by the following relations [33-35] 
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Um(𝐫) = Um,ext
 (𝐫) + Um,int

 (𝐫)   (1) 

and 

𝐇(𝐫) = 𝐇ext(𝐫) + 𝐇int(𝐫)   (2) 

 

We note that here we investigate the most general case where the external Um,ext(𝐫)/𝐇ext(𝐫) can 

be of any form on the plane normal to z axis, however, being homogeneous along it. Under these 

circumstances, by solving the Laplace equation and using the separation of variables technique 

[33-35], Um,ext(𝐫) = Um,ext(ρ)Um,ext(φ), we get  

 

ρ

Um,ext(ρ)

d

dρ
(ρ

dUm,ext(ρ)

dρ
) +

1

Um,ext(φ)

d2Um,ext(φ)

dφ2
= 0   (3) 

 

Τhe differential equation with respect to, φ, is equal to, −n2 < 0, where, n ∈ R , since its 

solution must be periodic (our problem is defined in the entire range, 0 ≤ φ ≤ 2π), while the 

differential equation with respect to, ρ, is equal to, +n2 > 0, as relation (3) dictates. This means 

that for the, angular component, Um,ext(φ), we get [33-35]   

 

Um,ext(φ) = {
               A0,m  +   B0,mφ,            n = 0

An,m
 cos(nφ) + Bn,m sin(nφ) , n ≠ 0

   (4) 

 

Using the boundary condition, Um,ext(φ) = Um,ext(φ + 2π), we get that, B0,m = 0, from, n = 0 

and n ∈ Z, from, n ≠ 0, thus relation (4) becomes 

   

Um,n,ext(φ) = An,m
 cos(nφ) + Bn,m sin(nφ) ,   n ∈ Z   (5) 

 

Similarly, the radial component, Um,ext(ρ), becomes [33-35] 

 

Um,n,ext(ρ) = {
C0,m  +   D0,m ln ρ ,   n = 0

     Cn,mρn   + Dn,mρ−n,       n ∈ Z − {0}
   (6) 

 

Here we recall that the primary source that produces the external pseudopotential/field, 

Um,ext
 (𝐫)/𝐇ext(𝐫), is placed outside the magnetic cylinder. Accordingly, using the condition 

that, Um,ext(ρ), must be finite at, ρ = 0, we get that, D0,m = 0, from, n = 0 and Dn,m = 0, from, 

n ∈ Z − {0}, thus, relation (6) becomes   

  

Um,n,ext(ρ) = Cn,mρn, n = 1,2,3, … , ∞   (7) 

 

By combining relations (5) and (7) we get that the general solution of, Um,ext(𝐫), is given by 

 

Um,ext(𝐫) = ∑ Um,n,ext
 (𝐫)

∞

n=0

= A0,m + ∑ ρn(An,m
 cos(nφ) + Bn,m sin(nφ))

∞

n=1

   (8) 
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where we renamed the coefficients, An,mCn,m → An,m and Bn,mCn,m → Bn,m, for every, n. The 

general term of the expansion is defined as 

 

Um,n,ext
 (𝐫) = ρn(An,m

 cos(nφ) + Bn,m sin(nφ)) (9) 

 

Similarly, 𝐇ext(𝐫), due to the constitutive relation 𝐇ext(𝐫) = −𝛁Um,ext(𝐫), should follow the 

respective expansion  

 

𝐇ext(𝐫) = ∑ 𝐇n,ext
 (𝐫)

∞

n=1

= − ∑ 𝛁 (ρn(An,m
 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

 (10) 

 

Note that in the above relation we have rejected the term, n = 0, since it obviously equals zero. 

The general term of the expansion is defined as 

 

𝐇n,ext
 (𝐫) = −𝛁 (ρn(An,m

 cos(nφ) + Bn,m sin(nφ))) (11) 

 

It should be noted that the above expressions of the external Um,ext
 (𝐫)/𝐇ext(𝐫) hold for both the 

inside and outside space of the cylinder, 𝐇ext(𝐫) = 𝐇ext
in (𝐫) = 𝐇ext

out(𝐫). In these expressions, the 

coefficients, An,m and Bn,m, are given by 

 

A0,m
 =

1

2π
∫ Um,ext(𝐫)dφ

2π

0

 (12) 

An,m
 =

1

πρn
∫ Um,ext(𝐫) cos(mφ) dφ

2π

0

 (13) 

Βn,m
 =

1

πρn
∫ Um,ext(𝐫) sin(mφ) dφ

2π

0

 (14) 

 

Notice that in the above coefficients the first subscript, n, refers to the order of the mode/term, 

while the second subscript, m, denotes the magnetic case studied here. The mode/term n = 0 is 

not considered below since it refers to a constant pseudopotential/zero field. The expansion 

coefficients, An,m
  and Bn,m

 , seem to be functions of the radial coordinate, ρ. However, recalling 

that Um,ext(𝐫) obeys the separation of variables, Um,ext(𝐫)~Um,ext(ρ)Um,ext(φ), we easily see 

that the radial component, Um,ext(ρ), can be brought out of the integral. Accordingly, the term 

1 ρn⁄  is ultimately cancelled so that the expansion coefficients, An,m
  and Bn,m, become 

constants.  

Once we have defined the form of the external entities, Um,ext
 (𝐫)/𝐇ext(𝐫), we may focus on the 

internal ones, Um,int(𝐫)/𝐇int(𝐫), which are produced by the secondary source of surface bound 

pseudocharge, σm,b(𝐫) = (𝐌(𝐫) ∙ 𝐧̂)|S:ρ=a, due to the respective discontinuity of the 

magnetization, 𝚳(𝐫) = χm
int𝐇(𝐫) (in our case 𝛁 ∙ 𝐌(𝐫) = 0 so that volume bound pseudocharges 
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do not exist). Under these conditions, the internal scalar potential, Um,int(𝐫), is obtained from 

σm,b(𝐫) through the generalized law of Coulomb [33-35], which due to the cylindrical character 

of the problem becomes [43] 

 

Um,int(𝐫) = −
a

2π
∫ σm,b(𝐫′) ln|𝛒 − a𝛒̂′| dφ′

 2π

0

= −
a

2π
∫ (𝐌(𝐫′) ∙ 𝛈̂′) ln|𝛒 − a𝛒̂′| dφ′

 2π

0

 (15) 

 

Notice that in the specific 2-dimensional case studied here, the pseudocharge density is actually 

linear, λm,b(a, φ′), since it resides along the periphery of the slice of the cylinder, ρ′ = a, as 

shown in Figure 1(b). However, since in the general case any pseudocharge density should 

depend on 𝐫′ = (ρ′, φ′), we will keep using the more general symbol σm,b(𝐫′). The above 

integral can be modified based on the multipole expansion on the basis of cos(nφ) and sin(nφ). 

Since we are interested in finding the total magnetic field everywhere in space, we should 

employ the proper expansion of ln|𝛒 − 𝛒′| in each one of the two cases of interest, that is for the 

inside space (ρ < ρ′) and outside space (ρ′ < ρ). For the general case, these expansions are 

given by [44] 

  

ln|𝛒 − 𝛒′| = ln ρ′ − ∑
1

n
(

ρ

ρ′
)

n

cos[n(φ − φ′)]

∞

n=1

,    ρ < ρ′  (16) 

and  

ln|𝛒 − 𝛒′| = ln ρ − ∑
1

n
(

ρ′

ρ 
)

n

cos[n(φ − φ′)]

∞

n=1

,    ρ′ < 𝜌 (17) 

 

where ρ and ρ′ run over the volume of observation and sources, respectively. In our case, the 

sources refer to the secondary/bound charge, σm,b(𝐫′), that resides at ρ′ = a. Combining 

relations (16) and (17) with relation (15), and using the facts that the coordinates of the 

secondary/bound source are, 𝐫′ = (ρ′, φ′) = (a, φ′) and that the normal vector to the surface of 

the cylinder is, 𝛈̂′ = 𝛒̂′, we get for the internal scalar pseudopotential 

 

Um,int
in (𝐫) = −

a ln a

2π
∫ 𝐌(a, φ′) ∙ 𝛒̂′dφ′

 2π

0

+
a

2π
∑

1

n
(

ρ

a
)

n

∫ 𝐌(a, φ′) ∙ 𝛒̂′ cos[n(φ − φ′)] dφ′

 2π

0

∞

n=1

  (18) 

 

at the inside space of the cylinder, ρ < 𝑎 and 

 

Um,int
out (𝐫) = −

a ln ρ

2π
∫ 𝐌(a, φ′) ∙ 𝛒̂′dφ′

 2π

0

+
a

2π
∑

1

n
(

a

ρ
)

n

∫ 𝐌(a, φ′) ∙ 𝛒̂′ cos[n(φ − φ′)] dφ′

 2π

0

∞

n=1

  (19) 

 

at the outside space of the cylinder, ρ > 𝑎. For convenience, we define the integrals of relations 

(18) and (19) through the following relation 
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Ιn
in(φ) = Ιn

out(φ) = Ιn
 (φ) = ∫ 𝐌(a, φ′) ∙ 𝛒̂′ cos[n(φ − φ′)] dφ′

 2π

0

  (20) 

 

Accordingly, the above relations (18) and (19) become 

 

Um,int
in (𝐫) = −

a ln a

2π
Ι0

 +
a

2π
∑

1

n
(

ρ

a
)

n

In(φ)

∞

n=1

  (21) 

and 

Um,int
out (𝐫) = −

a ln ρ

2π
Ι0

 +
a

2π
∑

1

n
(

a

ρ
)

n

In(φ)

∞

n=1

  (22) 

 

Realizing that the term I0 is constant, the internal component of the magnetic field gets the form 

 

𝐇int
in (𝐫) = −

a

2π
∑

1

nan
𝛁(ρnIn(φ))

∞

n=1

  (23) 

 

for the inside space of the cylinder, ρ < a, and 

 

𝐇int
out(𝐫) =

aΙ0
 

2π
𝛁(ln ρ) −

a

2π
∑

an

n
𝛁(ρ−nIn(φ))

∞

n=1

  (24) 

 

for the outside space of the cylinder, ρ > a.  

Up to now we have found expansion-based expressions of the external and internal 

pseudopotential and field, throughout the whole space. However, we still need the expressions of 

the integrals, In
 (φ), which are the same for the inside and outside space of the cylinder, as 

relation (20) evidences. Accordingly, we have to calculate the secondary source of bound 

pseudocharges, σm,b(a, φ′) = 𝐌(a, φ′) ∙ 𝛒̂′. To this end, we argue that due to the linear character 

of the magnetic cylinder, at the inside space the total field is given by the relation  

 

𝐇in(𝐫) = ∑ 𝐇n
in(𝐫)

∞

n=0

= ∑ Cn,m𝐇n,ext
in (𝐫)

∞

n=0

  (25) 

 

where Cn,m are the expansion coefficients, to be determined (notice that the first subscript, n, 

refers to the order of the mode/term, while the second subscript, m, denotes the magnetic case). 

With the help of relation (25) and considering that, 𝐌(𝐫) = χm
int𝐇in(𝐫), we calculate 

 

σm,b(a, φ′) = 𝐌(a, φ′) ∙ 𝛒̂′ = χm
int ∑ Cn′,m𝐇n′,ext

in (a, φ′) ∙ 𝛒̂′

∞

n′=0

 (26) 
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Substituting relation (10) into (26) we get 

 

σm,b(a, φ′) = −χm
int ∑ Cn′,m (𝛁 (ρ′n′

(An′,m
 cos(n′φ′) + Bn′,m sin(n′φ′))) ∙ 𝛒̂′) |ρ′=a

∞

n′=0

 (27) 

else  

σm,b(a, φ′) = −χm
int ∑ Cn′,mn′an′−1(An′,m

 cos(n′φ′) + Bn′,m sin(n′φ′))

∞

n′=0

 (28) 

 

Now we substitute this result into relation (20) and we use the fact that, cos[n(φ − φ′)] =
cos(nφ) cos(nφ′) + sin(nφ) sin(nφ′). After performing the trigonometric integrals we get 

 

Ιn
 (φ) = −χm

int ∑ Cn′,mn′an′−1πδnn′
 (An′,m

 cos(nφ) + Bn′,m sin(nφ))

∞

n′=0

 (29) 

else 

Ιn
 (φ) = −πχm

intCn,m nan −1(An,m
 cos(nφ) + Bn,m sin(nφ)) (30) 

 

From relation (30) it is obvious that, I0 = 0. Now that we have an expression for the, In(φ), we 

can rewrite relations (21), (22), (23) and (24). For the internal pseudopotential we get  

 

Um,int
in (𝐫) = −

χm
int

2
∑ Cn,mρn(An,m

 cos(nφ) + Bn,m sin(nφ))

∞

n=1

  (31) 

and 

Um,int
out (𝐫) = −

χm
int

2
∑ Cn,ma2n 

ρ−n(An,m
 cos(nφ) + Bn,m sin(nφ))

∞

n=1

  (32) 

 

The internal component of the magnetic field gets the form 

 

𝐇int
in (𝐫) =

χm
int

2
∑ Cn,m𝛁 (ρn(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

  (33) 

 

for the inside space of the cylinder, ρ < a and 

 

𝐇int
out(𝐫) =

χm
int

2
∑ Cn,ma2n𝛁 (ρ−n(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

  (34) 

 

for the outside space of the cylinder, ρ > a. 

 

III.A. Inside space of the magnetic cylinder 

Here we provide all details for the case of the inside space. The respective results of the outside 

space are summarized at the end of this section. As we already stated above, due to the linear 

Page 12 of 33AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-144351.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



13 
 

character of the magnetic cylinder, at the inside space the total field is given by relation (25). 

This means that the general term of the respective expansion, 𝐇n
in(𝐫), gets the form 

 

𝐇n
in(𝐫) = −Cn,m𝛁 (ρn(An,m

 cos(nφ) + Bn,m sin(nφ))) (35) 

 

Thus, the total field becomes  

 

𝐇in(𝐫) = − ∑ Cn,m𝛁 (ρn(An,m
 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

 (36) 

 

By using the standard constitutive relation 𝐇in(𝐫) = −𝛁Um
in(𝐫) the respective expression of the 

total potential at the inside space is given by the relation 

 

Um
in(𝐫) = ∑ Cn,m (ρn(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=0

 (37) 

 

Starting from relation (2) and by using relations (9), (10), (33) and (36) we get  

 

− ∑ Cn,m𝛁Um,n,ext
 (𝐫)

∞

n=1

= − ∑ 𝛁Um,n,ext
 (𝐫)

∞

n=1

+ ∑
χm

int

2
Cn,m𝛁Um,n,ext

 (𝐫)

∞

n=1

 (38) 

else 

∑ [Cn,m
 (1 +

1

2
χm

int) − 1] 𝛁Um,n,ext
 (𝐫)

∞

n=1

= 0 (39) 

 

Due to the fact that the vectors 𝛁Um,n,ext
 (𝐫) are linearly independent, the following relation 

should hold for the respective coefficients  

Cn,m
 (1 +

1

2
χm

int) − 1 = 0 (40) 

else 

Cn,m
 = Cm =

1

1 +
1
2 χm

int
 (41) 

 

where we have rejected the first subscript, n, since the expansion coefficients do not depend on 

the order of each mode/term of the external pseudopotential/magnetic field. By defining the 

depolarization factor  

 

N =
1

2
 (42) 

we finally obtain  
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Cm =
1

1 + Nχm
int (43) 

 

Here we should focus on an important finding that clarifies the underlying physics and can be 

useful in applications. Both the expansion coefficients, Cn,m
 = Cm, and the depolarization factor, 

N, are degenerate on the order, n, of the expansion. This means that both Cm and N attain a 

constant value irrespectively of the mode, Um,n,ext
 (𝐫)/𝐇n,ext

 (𝐫), of the external 

pseudopotential/field, Um,ext
 (𝐫)/𝐇ext

 (𝐫), relations (8) and (10), applied to the magnetic cylinder. 

In the case of the sphere studied in [36], the respective expansion coefficients exhibited 

degeneracy on the order, m (however, not on the degree, 𝑙) of each mode, Um,𝑙,ext
m (𝐫)/𝐇𝑙,ext

m (𝐫), 

of the applied external pseudopotential/field, Um,ext
 (𝐫)/𝐇ext

 (𝐫), since C𝑙
 = 1 (1 + N𝑙

 χe
int)⁄ . The 

respective depolarization factor exhibited a similar behavior since N𝑙
 = 𝑙 (2𝑙 + 1)⁄ .  

Returning to the magnetic cylinder studied here, once the expansion coefficients, Cn,m
 = Cm, 

have been determined, and given that the expansion coefficients, An,m
  and Bn,m

  are defined by 

relations (13) and (13), respectively, the total field of the inside space, relation (36), is given 

through the following relation 

 

𝐇in(𝐫) = −Cm ∑ 𝛁 (ρn(An,m
 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

 (44) 

 

Also, using relation (33), we can easily show that the internal field inside the cylinder is given 

through the following relation 

 

𝐇int
in (𝐫) = ∑ 𝐇n,int

in (𝐫)

∞

n=1

= Nχm
ext ∑ 𝛁 (ρn(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

 (45) 

 

where we defined the general term of the expansion and the extrinsic magnetic susceptibility 

through 

 

𝐇n,int
in (𝐫) = Nχm

ext𝛁 (ρn(An,m
 cos(nφ) + Bn,m sin(nφ))) (46) 

and 

χm
ext =

χm
int

1 + Nχm
int

 (47) 

 

By means of the above definition of coefficient Cm (relation (43)) and of χm
ext (relation (47)), the 

total magnetic field inside the magnetic cylinder can be rewritten as following 

  

𝐇in(𝐫) = −
χm

ext

χm
int

∑ 𝛁 (ρn(An,m
 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

 (48) 

 

Once we know 𝐇in(𝐫) the magnetization, 𝐌(𝐫) = χm
int𝐇in(𝐫), of the magnetic cylinder is 

immediately obtained as following 
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𝐌(𝐫) = −χm
ext ∑ 𝛁 (ρn(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

 (49) 

 

Going a step farther, from relations (11) and (46), we can easily obtain the relationship between 

the general terms of the internal and external fields for the inside space of the cylinder, ρ < 𝑎, as 

following 

 

𝐇n,int
in (𝐫) = −Nχm

ext𝐇n,ext
in (𝐫) (50) 

 

This relation is quite useful for applications. It defines the response of the magnetic cylinder to 

the external cause. Also, by using relation (47), we see that the prefactor of the right side is, also, 

written as following  

 

Nχm
ext =

Nχm
int

1 + Nχm
int

 (51) 

 

By defining the effective intrinsic magnetic susceptibility through 

 

χm
N = Nχm

int (52) 

 

Thus, the above relation (50) is rewritten as following  

 

𝐇n,int
in (𝐫) = −

χm
N

1 + χm
N

𝐇n,ext
in (𝐫) (53) 

 

Finally, to facilitate their applicability, below we summarize the relations of the internal and total 

pseudopotentials for the inside space of the magnetic cylinder, as following 

 

Um,int
in (𝐫) = ∑ Um,n,int

in (𝐫)

∞

n=0

= −Nχm
ext ∑ ρn(An,m

 cos(nφ) + Bn,m sin(nφ))

∞

n=0

 (54) 

and 

Um
in(𝐫) = ∑ Um,n

in (𝐫)

∞

n=0

= Cm ∑ ρn(An,m
 cos(nφ) + Bn,m sin(nφ))

∞

n=0

 (55) 

 

where we defined the relevant general term of each expansion through 

 

Um,n,int
in (𝐫) = −Nχm

extρn(An,m
 cos(nφ) + Bn,m sin(nφ)) (56) 

and 

Un
in(𝐫) = Cmρn(An,m

 cos(nφ) + Bn,m sin(nφ)) (57) 
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Accordingly, we easily see that the general terms of the internal and external pseudopotentials 

follow the relation  

 

Um,n,int 
in (𝐫) = −Nχm

extUm,n,ext 
in (𝐫) = −

χm
N

1 + χm
N

Um,n,ext 
in (𝐫) (58) 

 

III.B. Outside space of the magnetic cylinder 

The results for the outside space of the magnetic cylinder are summarized here, without any 

details on the algebraic calculations. We note that the external pseudopotential/field, 

Um,ext(𝐫)/𝐇ext(𝐫), are given by the same relations (8) and (10), as for the inside space of the 

cylinder. By using the same algebraic approach described above we obtain the following results   

 

𝐇int
out(𝐫) = ∑ 𝐇n,int

out (𝐫)

∞

n=1

= Nχm
ext ∑ a2n𝛁 (ρ−n(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

  (59) 

 

for the internal magnetic field, and  

 

𝐇 
out(𝐫) = − ∑ 𝛁 (ρn(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

 

+Nχm
ext ∑ a2n𝛁 (ρ−n(An,m

 cos(nφ) + Bn,m sin(nφ)))

∞

n=1

  

 

 

 

(60) 

 

for the total magnetic field. The respective relations for the internal and total magnetic 

pseudopotential are the following 

 

Um,int
out (𝐫) = ∑ Um,n,int

out (𝐫)

∞

n=0

= −Nχm
ext ∑

a2n

ρn
(An,m

 cos(nφ) + Bn,m sin(nφ))

∞

n=0

  (61) 

 

and 

 

Um
out(𝐫) = ∑ ρn(An,m

 cos(nφ) + Bn,m sin(nφ))

∞

n=0

− Nχm
ext ∑

a2n

ρn (An,m
 cos(nφ) + Bn,m sin(nφ))

∞

n=0

 (62) 

 

Obviously, the obtained results hold for the case where the external magnetic field, 𝐇ext
 (𝐫), is 

either DC (static case) or AC, time-harmonic of low-frequency (quasistatic case), e.g. the 

spatially-homogeneous 𝐇ext
 (𝐫) = 𝐇0

 cos (ωt). Thus, these results can be utilized in many 

applications of magnetic cylinders. 

 

IV. Dielectric cylinder -linear, homogeneous and isotropic- subjected to an external scalar 

potential/vector field of any form  

In this section we summarize the respective relations that hold for the relevant case of the 

dielectric cylinder of radius a, which constitutes of linear, homogeneous and isotropic material of 
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intrinsic susceptibility χe
int, when subjected to an external potential/field, Uext(𝐫)/𝐄ext(𝐫). These 

are produced by a primary source (e.g. free electric charges) that resides outside the dielectric 

cylinder. The secondary source of bound charges that resides at the surface of the dielectric 

cylinder, due to the discontinuity of the polarization, 𝐏(𝐫), will produce the internal 

Uint(𝐫)/𝐄int(𝐫). The total U(𝐫)/𝐄(𝐫) are provided by 

 

U(𝐫) = Uext
 (𝐫) + Uint

 (𝐫)  (63) 

 

and  

 

𝐄(𝐫) = 𝐄ext(𝐫) + 𝐄int(𝐫)  (64) 

 

Again, we refer to the most general case where the external Uext(𝐫)/𝐄ext(𝐫) can be of any form. 

Thus, Uext(𝐫) is expanded as following 

 

Uext(𝐫) = ∑ Un,ext
 (𝐫)

∞

n=0

= Α0 + ∑ ρn(An
 cos(nφ) + Bn sin(nφ))

∞

n=1

 (65) 

 

The general term of the expansion is defined as following 

 

Un,ext(𝐫) = ρn(An
 cos(nφ) + Bn sin(nφ)) (66) 

 

The necessary expansion coefficients, An
  and Bn

 , are given through the following relations 

 

A0
 =

1

2π
∫ Uext(𝐫)dφ

2π

0

 (67) 

An
 =

1

πρn
∫ Uext(𝐫) cos(nφ) dφ

2π

0

 (68) 

Βn
 =

1

πρn
∫ Uext(𝐫) sin(nφ) dφ

2π

0

 (69) 

 

Similarly, 𝐄ext(𝐫), due to the constitutive relation 𝐄ext(𝐫) = −𝛁Uext(𝐫), should follow the 

respective expansion  

 

𝐄ext(𝐫) = ∑ 𝐄n,ext
 (𝐫)

∞

n=1

= − ∑ 𝛁(ρn(An
 cos(nφ) + Bn sin(nφ)))

∞

n=1

 (70) 

 

The general term of the expansion is defined as following 

 

𝐄n,ext(𝐫) = −𝛁(ρn(An
 cos(nφ) + Bn sin(nφ))) (71) 

 

Page 17 of 33 AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-144351.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



18 
 

The above expressions of the external Uext(𝐫)/𝐄ext(𝐫) hold throughout the whole space, that is 

for both the inside and outside space of the dielectric cylinder. Now that we have at hand the 

necessary information for the external potential/field, we can summarize the relations for the 

respective internal, Uint(𝐫)/𝐄int(𝐫), and total, U(𝐫)/𝐄(𝐫), components, also, for both the inside 

and outside space of the cylinder. This is done below.  

 

IV.A. Inside space of the dielectric cylinder 

For ρ ≤ a the internal electric field is given by the following relation 

 

𝐄int
in (𝐫) = ∑ 𝐄n,int

in (𝐫)

∞

n=0

= Nχe
ext ∑ 𝛁(ρn(An

 cos(nφ) + Bn sin(nφ)))

∞

n=1

 (72) 

 

The general term of the expansion is given by the relation  

 

𝐄n,int
in (𝐫) = Nχe

ext𝛁(ρn(An
 cos(nφ) + Bn sin(nφ))) (73) 

 

The extrinsic electric susceptibility is provided through the relation 

 

χe
ext =

χe
int

1 + Nχe
int

 (74) 

 

The total electric field inside the cylinder is given through the relation 

 

𝐄in(𝐫) = −C ∑ 𝛁(ρn(An
 cos(nφ) + Bn sin(nφ)))

∞

n=1

 (75) 

 

where the coefficients, Cn, are given by the relation 

 

Cn
 = C =

1

1 +
1
2 χe

int
=

1

1 + Nχe
int

 (76) 

 

The total electric field obtains the following form  

 

𝐄in(𝐫) = −
χe

ext

χe
int

∑ 𝛁(ρn(An
 cos(nφ) + Bn sin(nφ)))

∞

n=1

 (77) 

 

The relation between the general terms of the internal and external electric fields is the following    

 

𝐄n,int
in (𝐫) = −Nχe

ext𝐄n,ext
in (𝐫) (78) 

 

By defining  
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Nχe
ext =

Nχe
int

1 + Nχe
int

 (79) 

 

and the effective intrinsic electric susceptibility through 

  

χe
N = Nχe

int (80) 

 

we get the equivalent relation   

 

𝐄n,int
in (𝐫) = −

χe
N

1 + χe
N

𝐄n,ext
in (𝐫) (81) 

 

The polarization 𝐏(𝐫) = ε0χe
int𝚬in(𝐫) is given by the following relation 

 

𝐏(𝐫) = −ε0χe
ext ∑ 𝛁(ρn(An

 cos(nφ) + Bn sin(nφ)))

∞

n=1

 (82) 

 

The relations of the internal and total potentials for the inside space of the dielectric cylinder are 

as followings 

 

Uint
in (𝐫) = ∑ Un,int

in (𝐫)

∞

n=0

= −Nχe
ext ∑ ρn(An

 cos(nφ) + Bn sin(nφ))

∞

n=0

 (83) 

 

and 

U 
in(𝐫) = ∑ Un

in(𝐫)

∞

n=0

= C ∑ ρn(An
 cos(nφ) + Bn sin(nφ))

∞

n=0

 (84) 

 

where we defined the relevant general term of each expansion as following 

 

Un,int
in (𝐫) = −Nχe

extρn(An
 cos(nφ) + Bn sin(nφ)) (85) 

 

and 

 

Un
in(𝐫) = Cρn(An

 cos(nφ) + Bn sin(nφ)) (86) 

 

The general terms of the internal and external potentials relate through  

 

Un,int
in (𝐫) = −Nχe

extUn,ext
in (𝐫) (87) 

 

IV.B. Outside space of the dielectric cylinder 

For ρ ≥ a the internal electric field is given by the following relation 
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𝐄int
out(𝐫) = ∑ 𝐄n,int

out (𝐫)

∞

n=1

= Nχe
ext ∑ a2n𝛁(ρ−n(An

 cos(nφ) + Bn sin(nφ)))

∞

n=1

  (88) 

 

The total electric field inside the cylinder is given through the relation 

 

𝐄 
out(𝐫) = − ∑ 𝛁(ρn(An

 cos(nφ) + Bn sin(nφ)))

∞

n=1

 

+Nχe
ext ∑ a2n𝛁(ρ−n(An

 cos(nφ) + Bn sin(nφ)))

∞

n=1

  

 

 

 

(89) 

 

The respective relations for the internal, Uint
out(𝐫), and total, U 

out(𝐫), potentials for ρ ≥ a are the 

followings 

 

Uint
out(𝐫) = ∑ Un,int

out (𝐫)

∞

n=0

= −Nχe
ext ∑

a2n

ρn
(An

 cos(nφ) + Bn sin(nφ))

∞

n=0

  (90) 

 

and 

 

U 
out(𝐫) = ∑ ρn(An

 cos(nφ) + Bn sin(nφ))

∞

n=0

− Nχe
ext ∑

a2n

ρn
(An

 cos(nφ) + Bn sin(nφ))

∞

n=0

 (91) 

 

Again, these results hold for the case where 𝐄ext
 (𝐫) is either a DC field (static case) or a time-

harmonic AC field, however, of low frequency (quasistatic case), e.g. 𝐄ext
 (𝐫) = 𝐄0

 cos (ωt). 

Thus, these results can be useful in many applications of dielectric cylinders. 

 

V. Summary of our findings and utilization in applications 

The above extended mathematical part needs a summary to facilitate its understanding and 

applicability. To this effect, two representative applications are briefly discussed below, one for a 

magnetic and one for a dielectric cylinder subjected to a field that from a mathematical point of 

view is quite demanding. 

 

V.A. Summary of our findings  

First of all, we recall that our method is based on the expansion of the external 

pseudopotential/field, Um,ext(𝐫)/𝐇ext(𝐫), on the basis of the particular space. To this end, 

relations (8)-(9) and (10)-(11), are needed, while the respective expansion coefficients, An,m
  and 

Bn,m
 , are available through relations (12), (13) and (14). Notably, these relations hold for the 

entire space, that is both inside and outside the magnetic cylinder. Referring to the inside space, 

the internal and total pseudopotentials, Um,int
in (𝐫) and Um

in(𝐫), are given through relations (54) and 

(55), respectively, while Um,int
in (𝐫) and Um,ext

in (𝐫) relate through relation (58). The respective 

internal and total fields, 𝐇int
in (𝐫) and 𝐇 

in(𝐫), are given through relations (45) and (48), 

respectively, while 𝐇int
in (𝐫) and 𝐇ext

in (𝐫) relate through relations (50) and (53). For the outside 
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space, relations (61)-(Error! Reference source not found.) and (59)-(60), hold for the internal 

and total pseudopotentials, Um,int
out (𝐫) and Um

out(𝐫), and fields, 𝐇int
out(𝐫) and 𝐇 

out(𝐫), respectively. 

All above relations are useful when the following ingredients are known: the expansion 

coefficients, Cm
  (relation (43)), the demagnetizing factor, N (relation (42)) and the extrinsic 

magnetic susceptibility, χm
ext (relation (47)). Finally, the magnetization, 𝐌(𝐫), of the magnetic 

cylinder is given through relation (49). The respective relations for the case of a dielectric 

cylinder are provided in section III for the external potential/field, in section III.1 for the internal 

and total potential/field of the inside space, and in section III.2 for the internal and total 

potential/field of the outside space. The polarization, 𝐏(𝐫), of the dielectric cylinder is given 

through relation (82). 

The universal expressions derived above hold for any form of the external potential/field. Their 

profound advantage is that they are ready-to-use, thus providing the necessary solutions for all, 

internal and total potentials and fields, and the polarization, in practically one step. Thus, there is 

no need to solve each different problem from the beginning through the application of lengthy 

algebraic calculations.  

To efficiently use these universal expressions the following procedure should be followed. First, 

the non-zero expansion coefficients and non-null modes n of the external pseudopotential/field 

should be found. These refer to An,m
 , Bn,m

  for the magnetic and An
 , Bn

  for the electric case, that 

can be obtained through relations (12), (13), (14) and (67), (68), (69) respectively. Second, the 

expansion coefficients, Cm for the magnetic and C for the dielectric case, are immediately 

calculated through relations (43) and (76), respectively. Then, both the internal and total 

pseudopotentials/fields are easily calculated everywhere in space, that is both inside and outside 

the cylinder, as summarized above. Also, the polarization is calculated for the inside space of the 

cylinder. Finally, referring to the fields, the vector functions 𝛁(ρn cos(nφ)), 𝛁(ρn sin(nφ)), 

𝛁(ρ−n cos(nφ)) and 𝛁(ρ−n sin(nφ)) are needed for the non-null modes n of every problem. 

Obviously, there is no need to calculate these functions from scratch every time we have to 

address a new problem. Tables of these functions are easily constructed for general use. For 

instance, for the case of the dielectric and magnetic sphere the respective functions 

𝛁(r𝑙Y𝑙
m(θ, φ)) and 𝛁(r−(𝑙+1)Y𝑙

m(θ, φ)) are needed. The first ones, for degree up to 𝑙 = 2, can be 

found in the Table of Appendix B in [36]. Such Tables can be easily set up for the case of 

dielectric and magnetic cylinder as well, to minimize the algebraic effort. Finally, the analytical 

form of the universal expressions presented here for cylinders and in [36] for spheres, sets a 

reliable and convenient basis for computational studies, to minimize requirements on resources. 
 

V.B. Utilization of our findings in applications 

To document the advantages of our universal expressions, here we address two rather demanding 

cases, one for a magnetic and one for a dielectric cylinder. The eager reader is invited to use 

standard approaches of electromagnetism, that unavoidably go through time-consuming algebraic 

calculations, to check the validity of the results provided below in these two representative 

problems. Immediately, becomes apparent that our approach provides the exact same results, 

reliably and effortlessly. 

V.B.1. First case: A linear, homogeneous and isotropic magnetic cylinder of radius, a and 

intrinsic susceptibility, χm
int, with its axis coinciding with the z axis. The cylinder is subjected to 

an external pseudopotential, Um,ext(𝐫), produced by two infinitely long wires, parallel to the z 

axis placed at x =  −b, and x =  b (a < 𝑏). The wires carry a current of 𝐈(x = −b) = −I0𝐳̂ and 
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𝐈(x = b) = I0𝐳̂ (see problem 5.15, page 228 in [33]). This configuration creates the following 

external pseudopotential [33] 

    

Um,ext(𝐫) =
I0

2π
(arctan [

ρ sin φ

b − ρ cos φ
] + arctan [

ρ sin φ

b + ρ cos φ
]) (92) 

 

By using relations (12), (13) and (14) we obtain the expansion coefficients 

 

An,m = 0,    for every n (93) 

Bn,m = 0,    n even (94) 

Βn,m =
I0

π

1

bn
,    n odd (95) 

 

Thus, the external pseudopotential, using relation (8), can be rewritten as 
 

Um,ext(𝐫) =
I0

π
∑ (

ρ

b
)

n

sin(nφ)

∞

n odd

 (96) 

 

This relation of Um,ext(𝐫) holds for both the inside and outside spaces, that is Um,ext(𝐫) =

Um,ext
in (𝐫) = Um,ext

out (𝐫). Substituting this information into the appropriate relations we can obtain 

the internal and total pseudopotentials and fields, for both the inside and outside space of the 

magnetic cylinder as following.  

Inside space: By substituting relations (93), (94) and (95) into relation (54) we obtain the internal 

pseudopotential 

 

Um,int
in (𝐫) = −Nχm

ext
I0

π
∑ (

ρ

b
)

n

sin(nφ)

∞

n odd

= −Nχm
extUm,ext

in (𝐫) (97) 

 

Also, by simply substituting relation (97) into relation (55) we obtain the total pseudopotential  
 

Um
in(𝐫) =

χm
ext

χm
int

I0

π
∑ (

ρ

b
)

n

sin(nφ)

∞

n odd

=
χm

ext

χm
int

Um,ext
in (𝐫) (98) 

 

It can be easily verified that the above result is absolutely the same with the one that is obtained 

with the standard, time-consuming mathematical approach that is based on step-by-step solution 

of the problem. 
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Figure 4. Simulations of relations (96) and (97) (the first five terms with n = 1, 3, 5, 7 and 9 are 

considered) via polar plots of the (a) external, Um,ext
in (𝐫),and the (b) internal, Um,int

in (𝐫), 

pseudopotentials at the inside space, ρ ≤ a, for a linear, homogeneous and isotropic magnetic 

cylinder with a = 1 μm, depolarization factor, N = 1/2,  and intrinsic susceptibility, χm
int = 100. 

The coaxial-to-z source wires are characterized by 𝐈(x = ±10 μm) = ±I0𝐳̂ with I0 = 3.14 A. 

The color bars refer to the intensity of the pseudopotentials and are exactly the same for the two 

panels. 

 

Figures 4(a)-4(b) present simulations for the inside space of the cylinder, ρ ≤ a, for realistic 

parameters. Specifically, we present polar plots of the pseudopotentials, the external, Um,ext
in (𝐫) 

(panel (a)), applied by the primary free source, and the internal, Um,int
in (𝐫) (panel (b)), as produced 

by the secondary bound source. The magnetic cylinder is linear, homogeneous and isotropic with 

radius, a = 1 μm, depolarization factor, N = 1/2 and intrinsic susceptibility, χm
int = 100. It 

should be noted that the particular value of χm
int is absolutely realistic (being rather low), 

exhibited by many typical magnetic materials. The two wires placed at x = ±10 μm provide the 

free sources of the DC currents 𝐈(x = ±10 μm) = ±I0𝐳̂, with a value I0 = 3.14 A. Panel (a) 

simulates relation (96), while panel (b) simulates relation (97). From these simulations becomes 

evident that Um,ext
in (𝐫) and Um,int

in (𝐫) are mirror images in respect to the xz-plane. Notice that the 

color bars of the two panels have the exact same range. Thus, the particular cylinder responds 

with an internal Um,int
in (𝐫) that practically cancels the applied external Um,ext

in (𝐫), that is 

Um,int
in (𝐫) ≈ −Um,ext

in (𝐫), leading to completely shielding of its inside space. Obviously, the same 

holds for the respective magnetic field. 

 

Outside space: By substituting relations (93), (94) and (95) into relation (61) we obtain the 

internal pseudopotential 

 

Um,int
out (𝐫) = −Nχm

ext
I0

π
∑ (

a

ρ
)

2n

(
ρ

b
)

n

sin(nφ)

∞

n odd

 (99) 

 

while by using relation (Error! Reference source not found.) we obtain the total pseudopotential 
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Um
out(𝐫) =

I0

π
∑ (1 − Nχm

ext (
a

ρ
)

2n

) (
ρ

b
)

n

sin(nφ) 

∞

n odd

 (100) 

 

Again, it can be easily verified that the above result is in nice agreement with that of the standard, 

time-consuming mathematical approach. By using the respective relations for the internal and 

total magnetic fields we can find these entities both inside, 𝐇int
in (𝐫) and 𝐇 

in(𝐫), and outside, 

𝐇int
out(𝐫) and 𝐇 

out(𝐫), the magnetic cylinder. 

 

 

  
 

Figure 5. Simulations of relations (96) and (99) (the first five terms with n = 1, 3, 5, 7 and 9 are 

considered) via polar plots of the (a) external, Um,ext
out (𝐫), and (b) internal, Um,int

out (𝐫), 

pseudopotentials at the outside space, a ≤ ρ, for the same parameters of Figure 4. The respective 

data of the inside space, Um,ext
in (𝐫) and Um,int

in (𝐫), are, also, presented. The color bars refer to the 

intensity of the pseudopotentials and are exactly the same for the two panels. 

 

Figures 5(a)-5(b) present the respective polar plots of the external, Um,ext
out (𝐫) (panel (a)) and the 

internal, Um,int
out (𝐫) (panel (b)) for the outside space, a ≤ ρ. Notice that in both panels we have 

focused on the same range of the color bars. The respective data of the inside space, Um,ext
in (𝐫) 

and Um,int
in (𝐫), are, also, included to document the continuity of both pseudopotentials at the 

interface, ρ = a, as expected. Accordingly, panel (a) simulates relation (96), while panel (b) 

simulates relation (99). From these simulations becomes evident that the response of the magnetic 

cylinder Um,int
in (𝐫) exhibits a robust dipolar character in the outside space. Indeed, this is 

confirmed by relation (97) where, evidently, the dependence on the radial variable attains the 

same form ρ−2, irrespectively of the value of n. Unfortunately, the degenerate character of the 

depolarization factor, N = 1/2, does not leave much space for engineering the response, 

Um,int
out (𝐫), of the magnetic cylinder in respect to the specific form of the applied external 

pseudopotential, Um,ext
out (𝐫).   

V.B.2. Second case: A linear, homogeneous and isotropic dielectric cylinder of radius, a and 

intrinsic susceptibility, χe
int, with its axis coinciding with the z axis. The cylinder is subjected to 

an external potential, Uext(𝐫), produced by a coaxial, thickless cylindrical shell of radius, b (a <
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𝑏). The cylindrical shell carries the primary source, a surface density of free charge, σf(b, φ) =
σ0 cos(mφ), which creates the following external potential 

 

Uext(𝐫) =
E0

2m

ρm

bm−1
 cos(mφ) (101) 

 

where, E0 = σ0/ε0, while m = 1,2,3, … , ∞. This relation of Uext(𝐫) holds for both the inside and 

outside spaces, that is Uext(𝐫) = Uext
in (𝐫) = Uext

out(𝐫). By using relations (67), (68) and (69) we 

obtain the expansion coefficients 

 

An = 0,    n ≠ m (102) 

An =
E0

2nbn−1
,    n = m (103) 

Βn = 0,    for every n (104) 

 

Substituting this information into the appropriate relations we can obtain the internal and total 

potentials and fields, for both the inside and outside space of the dielectric cylinder as following.  

Inside space: By substituting relations (102), (103) and (104) into relation (83) we obtain the 

internal potential 

 

Uint
in (𝐫) = −Nχe

ext
E0

2n

ρn

bn−1
 cos(nφ) = −Nχe

extUext
in (𝐫) (105) 

 

Also, by simply substituting relation (105) into relation (86) we obtain the total potential  

 

U 
in(𝐫) =

χe
ext

χe
int

E0

2n

ρn

bn−1
 cos(nφ) =

χe
ext

χe
int

Uext
in (𝐫) (106) 

 

It can be easily verified that the above result agrees with that obtained with the standard, time-

consuming mathematical approach. 
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Figure 6. Simulations of relation (105), that is of the internal potential, Uint
in (𝐫), as function of 

the external potential, Uext
in (𝐫), and intrinsic susceptibility, χe

int, at the inside space, ρ ≤ a. The 

color bar refers to the intensity of Uint
in (𝐫). 

 

Outside space: By substituting relations (102), (103) and (104) into relation (90) we obtain the 

internal potential 

 

Uint
out(𝐫) = −Nχe

ext (
a

ρ
)

2n E0

2n

ρn

bn−1
 cos(nφ) = −Nχe

ext (
a

ρ
)

2n

Uext
out(𝐫) (107) 

 

while by using relation (Error! Reference source not found.) we obtain the total potential 

 

U 
out(𝐫) = (1 − Nχe

ext (
a

ρ
)

2n

)
E0

2n

ρn

bn−1
 cos(nφ) (108) 

 

Again, it can be easily verified that the above result agrees with that obtained with the standard, 

time-consuming mathematical approach. By using the respective relations for the internal and 

total electric fields we can find these entities both inside, 𝐄int
in (𝐫) and 𝐄 

in(𝐫), and outside, 𝐄int
out(𝐫) 

and 𝐄 
out(𝐫), the dielectric cylinder.  
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Figure 7. Simulations of relation (90), that is of the internal potential, Uint
out(𝐫), as function of the 

external potential, Uext
out(𝐫), and intrinsic susceptibility, χe

int, at the outside space, a = 1 μm ≤
ρ ≤ 5 μm, for realistic values of the involved parameters. The radius of the charged cylindrical 

shell that produces the external potential is b = 10 μm (see text for details). The depolarization 

factor, N, and the radius, a, attain the same value in all four cases, N = 1/2 and a = 1 μm. (a) 

Intrinsic susceptibility, χe
int = 1, and order of external potential, n = 1. (b) Intrinsic 

susceptibility, χe
int = 1, and order of external potential, n = 2. (c) Intrinsic susceptibility, χe

int =
10, and order of external potential, n = 1. (d) Intrinsic susceptibility, χe

int = 10, and order of 

external potential, n = 2. In all panels, the color bars refer to the intensity of Uint
out(𝐫). 

 

Figures 7(a)-7(d) present detailed simulations of relation (90), that is of the internal potential, 

Uint
out(𝐫), in respect to the applied external potential, Uext

out(𝐫), and intrinsic susceptibility, χe
int, for 

the outside space, a ≤ ρ. Realistic values are employed for all involved parameters. In all four 

cases the depolarization factor, N, and the radius, a, of the dielectric cylinder attain the same 

value, N = 1/2 and a = 1 μm, while the intrinsic susceptibility, χe
int, and the order of external 

potential, n, differ from panel to panel. 

Panel (a) refers to χe
int = 1 and n = 1. We see that due to the relatively low value of χe

int the 

cylinder cannot shield its outside space effectively from the applied external potential. Thus, for 

the maximum value of Uext
out(𝐫) = 100 V, the internal potential attains the maximum screening 

value Uint
out(𝐫) = −33.40 V at the interface, ρ = a = 1 μm. As we move radially, away from the 

cylinder-vacuum interface, the screening efficiency drops rapidly, since Uint
out(𝐫) attains an 

absolute value below 10% of Uext
out(𝐫) just within 1 μm, that is for a = 1 μm ≤ ρ ≤ 2 μm. Panel 

(b) refers to χe
int = 1 and n = 2. Again, we see that for the maximum value of Uext

out(𝐫) = 100 V, 

the internal potential attains the maximum screening value Uint
out(𝐫) = −33.40 V at the interface, 

ρ = a = 1 μm. However, due to the higher value of the order, n, of the external potential, 

Uext
out(𝐫), the term (a/ρ)2n now exerts a stronger influence on the internal potential, Uint

out(𝐫) (see 

relation 107), so that it drops off even more rapidly in comparison to the first case. Thus, at a 

distance 1 μm from the cylinder-vacuum interface Uint
out(𝐫) attains an absolute value below 5% of 

Uext
out(𝐫). Panels (c) and (d) refer both to χe

int = 10, while the order, n, of Uext
out(𝐫) is  n = 1 and 

n = 2, respectively. We see that due to the significantly higher value of χe
int the cylinder now 

shields its outside space close effectively from the applied external potential, at least at its close 

neighborhood. Specifically, for the maximum value of Uext
out(𝐫) = 100 V, the internal potential 

attains the maximum screening value Uint
out(𝐫) = −83.40 V at the interface, ρ = a = 1 μm, in 

both cases. As we move radially, away from the cylinder-vacuum interface, the screening 

efficiency drops rapidly. However, now Uint
out(𝐫) attains an absolute value around 20% of Uext

out(𝐫) 

within 1 μm from the interface for the case where n = 1 (panel (c)), while for n = 2 the 

respective absolute value is around 10% due to the influence that the higher value of the order, n, 

of Uext
out(𝐫) has on Uint

out(𝐫) through the term (a/ρ)2n, as discussed above. 

Finally, the reader is invited to evaluate both the validity and easiness of our universal 

expressions by checking the solutions provided in the above two representative problems. To this 

end, the solutions should be found through standard approaches (e.g. using Poisson and Laplace 

equations, boundary conditions etc) that unavoidably go through time-consuming, lengthy 

algebraic calculations. Our approach has metabolized these calculations in advance, thus 

providing the final results in an effortless way through application of the universal expressions 

found in this work. 
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VI. Novelty, perspectives and limitations of the present work 

The present work provides clear analytical expressions for the internal field and the polarization 

of a magnetic and dielectric cylinder that, ideally, has infinite length, subjected to an external 

field applied by the user. The external field can have any form on the plane normal to the axis of 

the cylinder, while it preserves translational invariance along the axis. Under these conditions the 

obtained expressions are universal and ready-to-use in all relevant cases. As was evidenced in the 

representative applications discussed above, by using these universal expressions we can obtain 

reliable results, quite effortlessly, in practically a single step. These results are identical to the 

ones obtained by other standard methodologies of electromagnetism that unavoidably should go 

through lengthy, time-consuming algebraic calculations in a step-by-step approach.  

Our work has specific important findings that can be useful in realistic conditions, that is in 

experimental practice and in applications. First of all, we recall that here we consider a cylinder 

of infinite length, while in reality the assumption L/a ≫ 1 holds, at best. It is expected that in 

this case, the two edges of the cylinder should have, practically, negligible contribution in 

comparison to that of its extended, central part. We stress that in experimental practice and in 

applications we always handle specimens of limited size, thus we are obliged to make some 

assumptions. Below we make a brief discussion mainly focused on magnetism. We clarify that 

our assumptions are reasonable, especially when compared to the ones commonly met in 

experimental practice and in applications that in most cases are crude or even, entirely, 

unjustified. 

Regarding the experimental practice, when we use any kind of dc/ac magnetometer (such as 

SQUID, VSM, AC Susceptometer etc) to assess the magnetic properties of specimens, the 

specific shape and limited size of the specimen is not taken into account while processing the 

recorded responses. Specifically, the software of all commercial magnetometers, during the 

fitting of each recorded response, employs the very primitive model of an ideal, point-like, 

magnetic dipole to finally result in the magnetic moment/magnetization of the specimen on a 

quantitative basis [45,46]. Despite the fact that specimens are nor point-like (have finite 

dimensions), nor dipoles (higher order terms, such as quadrupole, can be present in the 

response), all commercial magnetometers use this very crude assumption. Our work makes a 

significant improvement in this respect. We have obtained theoretical expressions for the internal 

magnetic field (relation (45)) and the magnetization (relation (49)) of a cylinder for any form of 

the external magnetic field applied by the user on the plane normal to the cylinder’s axis. Thus, 

our theoretical results can be used to fit experimentally recorded responses, referring to 

specimens consisting of cylinders that ideally should have infinite length. Nevertheless, we 

assume that our theoretical expressions still hold for realistic cylinders given that the condition 

L/a ≫ 1 is satisfied, so that the cylinder seems to be infinite. Obviously, our results are much 

closer to reality when compared to the very crude assumption that cylinders (whether have 

infinite length or more realistically L/a ≫ 1), behave as ideal, point-like dipoles. Thus, our 

theoretical work paves the way to a more reliable interpretation, both qualitatively and 

quantitatively, of experimental data obtained in magnetic cylinders. 

Referring to applications, the magnetic cylinder is a model system in many respects. For 

instance, in the field of magnetophoresis, magnetic cylinders are met in various kinds of units in 

the form of wires that, indeed, satisfy the condition L/a ≫ 1. Examples are the so-called single-

wire and multi-wire magnetic separators [47-51]. In its simple version, this magnetophoretic unit 

consists of a single ferromagnetic wire [47], or a matrix of sparsely separated, non-interacting 
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ferromagnetic wires [48-51], that are subjected to an external magnetic field (most commonly, 

spatially homogeneous), applied normal to the directional axis. Each wire is magnetized by the 

external field, producing its internal field component. Accordingly, the total magnetic field 

becomes spatially inhomogeneous in close vicinity outside the surface of each wire. Importantly, 

all external, internal and total magnetic fields are homogeneous along the axis of the wire. Thus, 

the problem maintains translational invariance along this axis, so that, as discussed above, it is 

actually 2-dimensional (see Figures 1(a)-1(b)). On the contrary, on the plane normal to the axis 

of the wire the magnetic field is inhomogeneous resulting in a strong retention force that captures 

magnetic particles flowing inside a liquid medium [47-51]. Our work can be of interest in such 

devices for the detailed theoretical description of the underlying processes and the improvement 

of the overall retention efficiency. Specifically, in the basic version of these magnetic separators 

the external magnetic field applied by the user is homogeneous, while the inhomogeneity on the 

plane normal to the axis of the wires stems from their internal magnetic field. Our theoretical 

expressions can describe both easily and accurately the more complicate case where the external 

magnetic field is inhomogeneous, by default, on the plane normal to the axis of the wires 

(however, it should still preserve translational invariance along the directional axis). An 

inhomogeneous external magnetic field and the specific form of inhomogeneity (that is the 

employed specific mode(s)) can have significant impact on the retention force. For instance, the 

magnetophoretic units called quadrupole magnetic field flow fractionation (GMFFF), have the 

desired technical prescription [52-55]. These units are based on the introduction of an 

inhomogeneous magnetic field applied by a quadrupole electromagnet. The field is strongly 

inhomogeneous on the plane normal to the flow of a suspension of magnetic particles, while it 

preserves homogeneity along the axis of the flow [52-55]. Thus, using a GMFFF unit to apply a 

strongly inhomogeneous magnetic field on the plane normal to a single-wire or multi-wire 

building unit, could result in an efficient new device that probably has advanced characteristics. 

This hybrid device can still be described both easily and accurately by the theoretical expressions 

obtained in our work. Finally, in the field of electrophoresis, analogous separators exist that 

exhibit inhomogeneity on the plane normal to the building unit, while preserving homogeneity 

along its axis. For instance, a standard version is based on the coaxial configuration of a wire and 

a cylindrical shell, subjected to a potential difference. Such units are employed to precisely 

separate and capture charged nano/micro-particles [56-59]. Additional information on relevant 

magnetophoretic and electrophoretic units can be found in [55] and references therein. 

The present work has some limitations. For instance, here we considered analytically a single 

magnetic and dielectric cylinder subjected to an external field. As discussed above, this building 

unit is met in many applications, such as the single-wire and multi-wire magnetic separators [47-

51]. Obviously, our theoretical expressions fit ideally the single-wire case. A system of sparsely 

separated, non-interacting wires can, still, be easily studied following the same strategy. 

However, a system of densely packed, thus interacting wires, is more demanding. This situation 

is met in more complicate multi-wire magnetic separators based on a matrix of closely positioned 

wires [48-51]. More advanced theoretical approaches are needed to describe such units. Another 

limitation of our work stems from the inherent characteristics of the studied system. Specifically, 

our theoretical work describes systems that comprise of cylinders subjected to external fields that 

can exhibit any form of inhomogeneity on the plane normal to the cylinder’s axis. However, both 

the cylinder and the external field should preserve translational invariance along the directional 

axis. Future theoretical works should explore more complicate systems that comprise of 
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cylinders and/or external fields with inhomogeneous characteristics even along the directional 

axis.  

 

VII. Conclusions 

We reported definite results on a linear, homogeneous and isotropic magnetic and dielectric 

cylinder of seemingly infinite length, subjected to an external (pseudo)potential/field, Uext/Fext, of 

any form on the plane normal to the directional axis, produced by a primary source that resides 

outside the cylinder. An expansion-based mathematical approach was employed, that enabled 

direct access to universal expressions of the response of the magnetic and dielectric cylinder, i.e. 

the internal (pseudo)potential/field, Uint/Fint, against the external ones, Uext/Fext. Ready-to-use 

expressions of the total (pseudo)potential/field, U=Uext+Uint/F=Fext+Fint, and of the polarization, 

P, of the magnetic and dielectric cylinder were directly obtained, as well. The depolarization 

factor and the extrinsic susceptibility are degenerate since they obtain constant values, 

irrespectively of the mode of the applied Uext/Fext. These universal expressions between Uint-Uext, 

U-Uext, Fint-Fext, F-Fext and P-Fext provide effective means to describe both analytically and 

computationally relevant systems.  
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